#### The nucleon mass and sigma term from lattice QCD

Nolan Miller G. Bradley C. Drischler D. Howarth C. Körber H. Monge-Camacho A. Meyer A. Nicholson P. Vranas M. Lazarow A. Walker-Loud others

Nov 17, 2021









THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

The nucleon mass is one of the most precisely measured quantities in physics

- $\blacktriangleright$  Experiment: relative uncertainty to  $\sim$  1 part per 10 billion
- $\blacktriangleright$  Lattice: relative uncertainty to  $\sim 1$  part per 100

With the lattice, we can...

- ...check theory against experiment
- ...study convergence of heavy baryon  $\chi PT$
- ... use  $M_N$  to access other observables (eg,  $\sigma_{N\pi}$ )

| PROPERTY           | TYPE/SCALE                                                                                                |
|--------------------|-----------------------------------------------------------------------------------------------------------|
| ELECTRIC<br>CHARGE | -1 0 +1                                                                                                   |
| MASS               | 0 10 20                                                                                                   |
| SPIN NUMBER        | -13931                                                                                                    |
| FLAVOR             | (MISC. QUANTUM NUMBERS)                                                                                   |
| COLOR<br>CHARGE    | R (QUARKS ONLY)                                                                                           |
| MOOD               | 00000                                                                                                     |
| AUGNMENT           | GOOD-EVIL,<br>LAWRUL-CHAOTIC                                                                              |
| HIT POINTS         | ·····>                                                                                                    |
| RATING             | 含含含含合                                                                                                     |
| STRING TYPE        | BYTESTRING-CHARSTRING                                                                                     |
| BATTING<br>AVERAGE | 0% 100%                                                                                                   |
| PROOF              | 200                                                                                                       |
| HEAT               | 9 9 99 999                                                                                                |
| STREET VALUE       | \$0 \$100 \$200                                                                                           |
| ENTROPY            | (This Already has like<br>20 Deferent Confusing<br>Meanings, so it probably<br>Means something here, too) |

xkcd:1862

#### The sigma terms: what are they and what are they good for?

By definition, the sigma terms are the quark condensates inside the nucleon

 $\sigma_{q} = m_{q} \left\langle N | \overline{q} q | N \right\rangle$ 

These parameterize:

- the q-quark mass shift to  $M_N$
- the coupling to the Higgs
- the spin-independent coupling to some dark matter candidates



Large Underground Xenon experiment

#### Phenomenological significance of the nucleon-pion sigma term

Let  $\chi$  be the lightest neutralino from the minimal supersymmetric extension to the Standard Model (MSSM).

$$\mathcal{L}_{q} = \sum_{i} \underbrace{\alpha_{3i} \, \overline{\chi} \chi \, \overline{q}_{i} q_{i}}_{\text{spin-independent}} + \sum_{i} \underbrace{\alpha_{2i} \, \overline{\chi} \gamma_{\mu} \gamma_{5} \chi \, \overline{q}_{i} \gamma^{\mu} \gamma_{5} q_{i}}_{\text{spin-dependent}}$$

MSSM direct dark matter experiments look for scattering off nuclei

- ► interactions either spin-independent (σ<sub>q</sub>) or spin-dependent (g<sup>q</sup><sub>A</sub>)
- ▶ spin-dependent cross section suppressed by  $\beta^2 = (v/c)^2$



[Thornberry; doi:10.1140/epjs/s11734-021-00093-1]

## Two paths to the sigma term

The direct approach:

- Generate  $\sigma_{N\pi} = \hat{m} \langle N | \overline{u}u + \overline{d}d | N \rangle$  per lattice ensemble
- ► Fit the 3-point function
- Extrapolate  $\sigma_{N\pi}$  to the physical point

The Feynman-Hellman approach:

- Generate  $C(t) = \langle 0 | O_N^{\dagger}(t) O_N(0) | 0 \rangle$
- ► Fit the 2-point function
- Extrapolate  $M_N$  to the physical point

- Calculate 
$$\sigma_{N\pi} = \hat{m} \frac{\partial M_N}{\partial \hat{m}}|_{\text{phys point}}$$





[FLAG; arXiv:1902.08191]

#### Previous work



[FLAG, 2019; arXiv:1902.08191]



### Project objectives & lattice details

Objectives:

- 1. Fit correlators
- 2. Extrapolate masses to the phys point
- 3. Calculate  $\sigma_{N\pi}$  via the Feynman-Hellman theorem

| Action         | Valence: Domain-wall |
|----------------|----------------------|
|                | Sea: staggered       |
| Gauge configs  | MILC – thanks!       |
| $m_{\pi}$      | 130 - 400 MeV        |
| а              | 0.06 - 0.15 fm       |
| Scale setting? | Done!                |



### N correlator fits (a09m135)



### Fit strategy: mass formulae

Instead of fitting  $M_N$ , fit dimensionless  $M_N/\Lambda_{\chi}$  $(\Lambda_{\gamma} = 4\pi F_{\pi}, \ \epsilon_{\pi} = m_{\pi}/\Lambda_{\gamma})$  $\frac{M_N}{4\pi E} = c_0$ (LLO) +  $\left(\beta_N^{(2)} - c_0 \overline{\ell}_4^r\right) \epsilon_\pi^2 + c_0 \epsilon_\pi^2 \log \epsilon_\pi^2$ (LO) $-\frac{3\pi}{2}g_{\pi NN}^2\epsilon_{\pi}^3$ (NLO)  $+ \left(\beta_N^{(4)} + c_0 \left(\overline{\ell}_4^r\right)^2 - c_0 \beta_F^{(4)}\right) \epsilon_\pi^4$  $(N^{2}LO)$  $-\frac{1}{4}c_{0}\epsilon_{\pi}^{4}\left(\log\epsilon^{2}\right)^{2}+\left(\alpha_{N}^{(4)}-c_{0}\alpha_{F}^{(4)}-2c_{0}\overline{\ell}_{4}^{r}\right)\epsilon_{\pi}^{4}\log\epsilon_{\pi}^{2}$ 

- The 1/4πF<sub>π</sub> expansion doesn't require fitting additional LECs; it only adds some log terms
- We'd like to push this  $M_N/\Lambda_{\chi}$  analysis as far as possible

### $M_N/\Lambda_{\chi}$ extrapolations



Fit has negligible lattice spacing dependence

#### Expansion of $\sigma_{N\pi}$

Expand 
$$\sigma_{N\pi} = \hat{m} \frac{\partial M_N}{\partial \hat{m}} \rightarrow \hat{m} \frac{\partial}{\partial \hat{m}} = \frac{1}{2} \epsilon_{\pi} (\cdots) \frac{\partial}{\partial \epsilon_{\pi}}$$
  

$$\sigma_{N\pi} = \frac{1}{2} \epsilon_{\pi} \left[ 1 + \epsilon_{\pi}^2 \left( \frac{5}{2} - \frac{1}{2} \overline{\ell}_3 - 2 \overline{\ell}_4 \right) + \mathcal{O} \left( \epsilon_{\pi}^3 \right) \right] \underbrace{\left[ \Lambda_{\chi}^* \frac{\partial (M_N / \Lambda_{\chi})}{\partial \epsilon_{\pi}} + \frac{M_N^*}{\Lambda_{\chi}^*} \frac{\partial \Lambda_{\chi}}{\partial \epsilon_{\pi}} \right]}_{\frac{1}{2} \epsilon_{\pi} \Lambda_{\chi}^* \frac{\partial (M_N / \Lambda_{\chi})}{\partial \epsilon_{\pi}} = \frac{1}{2} \Lambda_{\chi}^* \left[ \left( -2c_0 \left( \overline{\ell}_4 - 1 \right) + 2\beta_N^{(2)} \right) \epsilon_{\pi}^2 + \mathcal{O} \left( \epsilon_{\pi}^3 \right) \right] \sim 10 \text{ MeV}}_{\frac{1}{2} \epsilon_{\pi} \frac{M_N^*}{\Lambda_{\chi}^*} \frac{\partial \Lambda_{\chi}}{\partial \epsilon_{\pi}} = \frac{1}{2} M_N^* \left[ 2 \left( \overline{\ell}_4 - 1 \right) \epsilon_{\pi}^2 + \mathcal{O} \left( \epsilon_{\pi}^3 \right) \right] \sim 40 \text{ MeV}}$$

- Fitting  $M_N/\Lambda_{\chi}$  requires an extra term
- $\blacktriangleright$  Largest contribution comes from second term  $\implies \overline{\ell}_4$  must be precisely determined

### Comparing $\chi PT$ terms by order



Here we use:

- $F_{\pi}$ -derived  $\chi$ PT terms up to  $\mathcal{O}(\epsilon_{\pi}^2)$  &  $M_N$ -derived  $\chi$ PT terms up to  $\mathcal{O}(\epsilon_{\pi}^4)$
- ▶ FLAG average for  $\overline{\ell}_4$

## $\sigma_{N\pi}$ as a function of $\overline{\ell}_4$





[FLAG, 2019; arXiv:1902.08191]

# $F_{\pi}$ extrapolation: $\mathcal{O}(\epsilon_{\pi}^2) \ \chi \mathsf{PT} + \mathcal{O}(a^4)$



## Summary & future work

In conclusion:

- Tension exists between phenomenology and the lattice w.r.t.  $\sigma_{N\pi}$
- Can extract  $\sigma_{N\pi}$  from a dimensionless fit of  $M_N/\Lambda_{\chi}$
- However, this requires a precise determination of the LECs associated with the chiral expression for F<sub>π</sub>

To do:

- Carefully determine  $F_{\pi}$  LECs for  $\sigma_{N\pi}$
- Add FV corrections



#### Mass formula with $\Delta$ Extra slides

$$\frac{M_{N}}{4\pi F_{\pi}} = c_{0} \qquad (LLO) 
+ \left(\beta_{N}^{(2)} - c_{0}\overline{\ell}_{4}^{r}\right)\epsilon_{\pi}^{2} \qquad (LO) 
- \frac{3\pi}{2}g_{\pi}^{2}{}_{NN}\epsilon_{\pi}^{3} - \frac{4}{3}g_{\pi}^{2}{}_{N\Delta}\mathcal{F}(\epsilon_{\pi}, \epsilon_{N\Delta}, \mu) \qquad (NLO) 
+ \gamma_{N}^{(4)}\epsilon_{\pi}^{2}\mathcal{J}(\epsilon_{\pi}, \epsilon_{N\Delta}, \mu) - \frac{1}{4}c_{0}\epsilon_{\pi}^{4} \left(\log\epsilon^{2}\right)^{2} \qquad (N^{2}LO) 
+ \left(\alpha_{N}^{(4)} - c_{0}\alpha_{F}^{(4)} - 2c_{0}\overline{\ell}_{4}^{r}\right)\epsilon_{\pi}^{4}\log\epsilon_{\pi}^{2} 
+ \left(\beta_{P}^{(4)} + c_{0}\left(\overline{\ell}_{4}^{r}\right)^{2} - c_{0}\beta_{F}^{(4)}\right)\epsilon_{\pi}^{4}$$

Some observations:

- The  $1/4\pi F_{\pi}$  expansion doesn't *require* fitting additional LECs
- The  $\Lambda$ - $\gamma$ PT terms push the fit downwards.