
Vus from hyperon semileptonic decays

Soon LHCb will have millions of hyperon semileptonic decays available 
for analysis. We propose to calculate transition form factors which, 
when combined with measurements of decay widths from LHCb, will 
be used to determine the Cabibbo–Kobayashi–Maskawa (CKM) matrix 
element Vus.  Along the way, we will also calculate the hyperon mass 
spectrum and axial charges as a test of baryon chiral perturbation 
theory, which will serve as the framework for the form factor 
calculations.  

 Hyperonic observables on the lattice

Vus as a test of the Standard Model

Vus from FK/Fπ Scale setting with w0 Hyperon masses and axial charges

In order to convert the dimensionless lattice observables into physical 
units, we performed a procedure known as scale setting. In our work, 
we used the Ω baryon mass to set the scale.

We determine the Ω mass in lattice units on some lattice (ensemble) 
through the two-point function.
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Since the ‘50s, physicists have known that strangess is not conserved 
by the weak interaction. In fact, because the quark eigenstates of the 
strong and weak interaction are different, no quark flavor is conserved 
by the weak interaction. This mismatch is encoded in the CKM matrix.
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The Standard Model predicts that the CKM matrix is unitary. From this 
requirement follows the “top-row unitarity” condition.

Of these three matrix elements, Vud can be measured the most 
precisely while Vub is almost negligible. Although Vus can be determined 
purely experimentally, the most precise determinations of Vus require 
lattice QCD calculations of the form factors.

Techniques for determining Vus

Vus is determined using one of four sources:
● Leptonic K decays (previous work of ours)
● Semi-leptonic K decays
● Hyperonic decays (goal of this project)
● Tau hadronic decays
The most straightforward calculation comes from leptonic decays, 
which requires us to calculate only a single form factor. 

Through Fermi’s golden rule, we can relate this transition matrix 
element to the the decay widths.

As a variation of the pure leptonic decay calculation, Marciano has 
shown how we can relate the ratio of the kaon and pion decay 
constants FK/Fπ to the ratio Vus/Vud. This provides an independent and 
competitve determination of Vus.

In this vein, we can determine Vus by calculating FK/Fπ on the lattice. 
Marciano’s formulation has several advantages:
● FK/Fπ is dimensionless   scale setting is unnecessary⇒
● FK , Fπ correlated  increased precision⇒
● Mesonic, not baryonic  no signal-to-noise problems from baryonic ⇒

operators
● Chiral extrapolation known to O(mπ

2) (NNLO)  limited by statistics⇒
With FK , Fπ generated on the lattice, we can construct an expression 
for the observable FK/Fπ using chiral perturbation theory. By 
determining the low energy constants (LECs) of the chiral expression, 
we can extrapolate our lattice data to the physical point. 

Defining εp=mp/Λχ , the chiral expression to NLO is

In our work, we considered chiral terms up to NNLO (written out, the 
expression would be too large to fit on this poster). We considered 
several trucations of the chiral terms (including a comparison to a pure 
Taylor expansion), as well as multiple parameterizations of the chiral 
cutoff and lattice artifacts. In total, we examined 216 different models; 
however, as most of these models had negligible weight, we further 
limited our study to 24 models when performing the model average.

Left: an example fit. The different 
bands display extrapolations at 
different lattice spacings, with the 
purple band showing the 
extrapolation at the continuum 
point. The intersection of the 
vertical line and the purple band 
is the extrapolation of FK/Fπ to the 
physical point.

Right: our determination of Vus/Vud 
(red band). The horizontal blue 
band denotes the global lattice 
average of Vus from semileptonic K 
decays, while the vertical green 
band denotes the Vud average from 
the PDG. The intersection of the 
green and red bands is our 
determination of Vus.

Determining Vus from hyperon decays follows a similar procedure; 
however, the process is slightly by complicated by the need for multiple 
form factors. In particular, although the purely leptonic decay transition 
element only has a vector part, the hyperon matrix element can be split 
into a vector and axial part. 

Unlike the vector form factor from leptonic decay, the axial form factor 
from hyperon decay is not protected by the Ademello-Gatto theorem. 
Therefore SU(3) breaking effects are expected to play a larger role 
when extracting Vus from hyperon decays, necessitating a study of 
baryon chiral pertubation theory.

Left: stability plot for the Ω on 
some ensemble. Here we 
consider fits fixing tmax while 
varying tmin and the number of 
states ns. Since early times are 
contaminated by excited state 
contributions and late times have 
low signal-to-noise, the “best” fit 
involves only a small window of 
times. 

On this particular ensemble, the lattice spacing is a ~ 0.06 fm. Thus

which is near the physical point value of 1672.45(29) MeV, albeit with 
unquantified uncertainties from systematics.

Given the values of the amΩ(mπ, mK, a) on many ensembles, we 
extrapolate to the physical point mΩ(mπ=mπ

expt, mK=mK
expt, a=0). 

Comparing the extrapolated value with the experimental value allows 
us to set the scale. We perform the extrapolation using these 
dimensionless quantities:

Right: chiral extrapolation of w0mΩ 
as a function of light quark mass. 
By extrapolating to the physical 
point (starred quantities), we find 
the   physical value of w0 to be

Left: chiral interpolation of w0/a at 
different lattice spacings. By using 
the interpolated value of w0/a at a 
given lattice spacing in conjunction 
with the extrapolated value of w0, 
we can determine the physical value 
of an observable on a given lattice. 
For the Ω example above:

A hyperon is a baryon containing at least one strange quark and no 
heavier quarks. Besides their role in extracting Vus, hyperons are 
thought to potentially play an important role in neutron stars. Although 
hyperons quickly decay in the lab, under the immense pressure of a 
neutron star, hyperons could potentially be stable over timespans of 
millions of years. Understanding hyperon properties such as their 
masses and axial charges are therefore integral when modeling the 
equation of state of a neutron star.

Employing SU(2) chiral perturbation theory, we are able to construct 
mass formulae for the 6 hyperons of the baryon decuplet. As an 
example, the chiral mass formula for the cascade is given below.

Right: a representative fit of the Ξ 
mass. Here  εa = a / 2w0 
characterizes the lattice spacing 
dependence. The black dot is the 
PDG value.

Right: mass of Ξ on various 
lattices, sorted by pion mass. 
Vertical/horizontal bands denote 
physical values.

Right: An axial charge fit on an 
ensemble.Notice that chiral mass 
formula depends on the axial 
charges g. A simultaneous fit of 
both observables, therefore, will 
lead to improved precision in both 
extrapolations. 

Right: chiral extrapolation of mΩ√t0 
as a function of lattice spacing. 
Depending on the observable used 
for scale setting, the observable can 
approach the physical point quite 
differently.
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