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ABSTRACT

Nolan B. Miller: Applications of chiral perturbation theory to lattice quantum chromodynamics
(Under the direction of Amy Nicholson)

In this dissertation, we calculate hadronic observables through the application of chiral perturbation

theory to lattice quantum chromodynamics. Quantum chromodynamics is the quantum field theory for

the strong interaction which, in the low-energy regime, becomes non-perturbative. The lattice acts as a

regulator for the theory and allows us to make predictions at low-energy even without a perturbative expansion.

However, since these lattice calculations require non-zero lattice spacing and often assume light quark masses

much greater than those provided by Nature, calculating observables requires us to extrapolate the results

from multiple lattice ensembles to the physical, continuum limit. We perform these extrapolations using chiral

perturbation theory, an effective field theory for quantum chromodynamics in which the degrees of freedom

are the pseudo-Goldstone bosons emerging from the explicit, spontaneous breaking of chiral symmetry.

We concentrate particularly on determining the gradient flow scales w0 and t0, which allow us to set the

scale of our lattice; the ratio of the pseudoscalar decay constants FK/Fπ, from which we determine the ratio

of the Cabibbo-Kobayashi-Maskawa matrix elements |Vus|/|Vud|; the masses of the cascades, as a precursor

to a lattice determination of the hyperon transition matrix elements; and finally the nucleon sigma term, which

has implications for the cross section of the neutralino in the minimal supersymmetric Standard Model.
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Regarding lattice quantum chromodynamics

.

Quantum chromodynamics

In the same space one could write the range equation for projectile motion, we can write the Lagrangian

density for quantum chromodynamics (QCD), which describes the majority of visible matter in the universe.

To wit,

L =
∑
f

qf (iγµDµ −mf ) qf −
1

4
GaµνG

µν
a . (1.1)

A quantum field theory (QFT) is only as good as its symmetries; QCD imposes color SU(3) “symmetry”

(manifest in Roman indices a, b, c, . . .) and Lorentz symmetry (manifest in the Greeks indices µ, ν, . . .). Of

course, there is nothing surprising about including the latter symmetry: all quantum field theories have it.

We’ll avoid asking why the degrees of freedom of the QCD Lagrangian, i.e. the gluon and quark fields,

have the quantum numbers they have: that question can be (unsatisfactorily) answered with “because

experiment demands so.” Instead, we’ll see how the particular quantum numbers demanded by the theory

(e.g., gluons being spin-1 particles) require the Lagrangian written above.

A refresher on Lie groups, their algebras, and their representations

To check whether a Lagrangian respects a proposed symmetry, we verify that the Lagrangian remains

invariant under a transformation of the fields by that symmetry. In practice this means that we codify a

symmetry by expressing it in terms of some (matrix) Lie group. Often, rather than work directly with the

Lie groups (which in general can be quite messy), we instead work with the Lie algebras (which are linear).

These objects are not always carefully between in the physics literature.
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Colloquially, we often talk about Lie groups as being exponentiated Lie algebras. More rigorously, if G

is a Lie group, then we define the Lie algebra of G as [1]

g =
{
X | eitX ∈ G ∀t ∈ R

}
. (1.2)

From this definition, the following theorem follows: if X,Y ∈ g, then also i(XY −Y X) ∈ g, which perhaps

explains the ubiquity of Lie brackets in QFT. Alternatively, one can endow a vector space V with a bilinear

operation [·, ·] : V × V → V and (assuming a few other requirements are met) generate a Lie algebra that

way.

As perhaps the most important example in QFT, consider the Lorentz group, which is the group of

rotations and Lorentz boosts (technically we’re interested in a subset of the Lorentz group, the restricted

Lorentz group SO+(1, 3), which forces time and parity operations to be discrete rather than continuous). The

corresponding Lie algebra so(1, 3) is just the vector space C4×4 with the Lie bracket [2]

[J ρσ,J τν ] = i (ηστJ ρν − ηρτJ σν + ηρνJ στ − ησνJ ρτ ) (1.3)

= ifρστναβJ αβ (1.4)

where J µν is an infinitesimal generator of the Lorentz group. A generic element of the Lorentz Lie group

can then be written

Λαβ = [exp (−iωµνJ µν)]αβ (1.5)

where the antisymmetric ωµν is a parameter of the transformation (one can think of Jµν as being the basis

elements and ωµν as selecting a particular Λ).

Of particular interest to us are representations of the Lorentz group. A (matrix) representation D of the

Lorentz groups is a map (technically, homomorphism) taking the Lorentz group to the set of invertible n× n

matrices, i.e.

D : SO+(3, 1)→ GL(n;C) (1.6)

such that D[Λ1]D[Λ2] = D[Λ1Λ2] (see Chapter 4 of [3]). Further, every representation of a Lie group gives

rise to a representation of its corresponding Lie algebra (see Theorem 3.18 of [1]), and often the converse
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holds too. In the next section, we’ll see how these representations are used to characterize particles of

different spins.

Lorentz symmetry

To understand how Lorentz symmetry is encoded into QCD, we must dig a little deeper into its Lagrangian.

First consider the gluon fields Aaµ, which are hidden inside Gaµν :

Gaµν = ∂µA
a
ν − ∂νAaµ + gfabcA

b
µA

c
ν . (1.7)

For now, we are only interested in the Lorentz (Greek) indices.

In general, given a field φα, we require the field transform under a Lorentz transformation Λ as

φα(x)→ φ′α(x) = D[Λ]αβφ
β(Λ−1x) (1.8)

where the matrices D[Λ] form a representation of the Lorentz (Lie) group. When constructing the QCD

Lagrangian, we might first consider what the correct representation is for the quark fields with respect to

Lorentz symmetry. For instance, given the Klein-Gordon Lagrangian

LK-G =
1

2

(
∂µφ∂

µφ−m2φ2
)

(1.9)

the scalar (spin-0) field φ need only transform per the trivial representation in order to preserve Lorentz

symmetry: D[Λ] = 1. That is,

φ(x)→ φ′(x) = φ(Λ−1x) . (1.10)

It’s straightforward to check that the Klein-Gordon Lagrangian remains unchanged when we take φ(x)→

φ′(x): just apply the chain rule and use the relation ηστΛµσΛντ = ηµν along with Λν
µ = (Λ−1)µν .

Next, consider a vector (spin-1) field Aµ. The simplest example we can concoct is quantum electrody-

namics (QED) without sources, i.e. QED with photons only. The corresponding Lagrangian is

LQED-light = −1

4
FµνF

µν (1.11)
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where Fµν = ∂µAν − ∂νAµ. As a vector field, Aµ transforms per the fundamental representation: D[Λ] = Λ.

Thus

Aµ(x)→ A′µ(x) = Λµ
νAν(Λ−1x) . (1.12)

Again, one can check that under a Lorentz transformation of the fields, in this case Aµ(x) → A′µ(x), the

Lagrangian remains unchanged.

The similarity between Fµν and Gaµν is obvious, especially if we suppress the color indices. One might

worry about the extra term quadratic in the gluon fields, but this term is Lorentz invariant for the same reason

∂µφ∂
µφ is Lorentz invariant in the scalar theory. All of this is to be expected: the gluon, like the photon, is a

spin-1 particle.

So far we have considered two different representations of the Lorentz group: the trivial representation,

which gives rise to spin-0 particles, and the fundamental representation, which gives rise to spin-1 particles

such as the gluon. In some sense, these are the simplest representations of the Lorentz group. However,

experiments require that the quarks be neither spin-0 nor spin-1 but spin-1
2 particles. To that end, we consider

the Dirac equation

(iγµ∂µ −m)φ = 0 . (1.13)

Historically, the Dirac equation stems from Dirac’s attempt to write a Lorentz invariant wave equation

linear in ∂µ (contrast to the Klein-Gordon Lagrangian above). If γµ → aµ is just an ordinary number, this

task is evidently impossible: aµ∂µ is a directional derivative with a clearly preferred direction. But if we act

on this wave equation with (iγµ∂µ +m), we have that

(
−γµγν∂µ∂ν +m2

)
φ = 0 . (1.14)

Using the fact that derivatives commute, we can write γµγν∂µ∂ν = 1
2{γµ, γν}∂µ∂ν . From this, we see that

{γµ, γν} = 2ηµν , which means that γµ and γν must be an elements of the Clifford algebra C`1,3(R).

So far we’ve spoken of representations of Lie groups, but as mentioned in the previous section, one can

also have representations of Lie algebras. One representation of the Lorentz Lie algebra (1.3) is

D̃[J ρσ] = Sρσ =
i

4
[γρ, γσ] (1.15)
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from which we can define the adjoint representation of the Lorentz group: D[Λ] = exp (−iωµνSµν). Like

the fundamental representation, the adjoint representation is also composed of 4× 4 matrices; however, it’s

worth keeping in mind that this representation is unique. The Dirac field therefore transforms as

φα(x)→ φ′α(x) =
(
e−iωµνS

µν)α
β
φβ(Λ−1x) . (1.16)

Now we’re equipped to understand the Dirac Lagrangian,

L = φ(iγµ∂µ −m)φ . (1.17)

Here we define φ = φ†γ0, where γ0 = I ⊗ σ3 (the factor of γ0 is required for the Lagrangian to remain

Lorentz invariant since D[Λ] is not unitary for this particular representation). Following some algebra

involving γ-matrices, we see that this Lagrangian is indeed Lorentz invariant under φ→ φ′.

Of course, this is all analogous to the case of QCD. With respect to Lorentz symmetry, the quark fields

transform in the same way.

Color SU(3)

Even after the success of Gell-Mann’s eightfold way and the advent of the quark model in the early

1960s, there was one major hurdle to the quark model remaining: it appeared to violate the Pauli exclusion

principle [4]. Particles like ∆++ = (uuu) required the quarks to all be in the same state if flavor and spin are

all there is. In 1964, Oscar Greenberg proposed a solution in which the quarks also carried another quantum

number—color. With this addition, the quark model was relatively complete, baring the inclusion of yet

unseen heavier quarks. (Nevertheless, it still took another ten years or so before physicists fully accepted the

quark model).

Experiments show that quarks must come in three different colors (and three different anti-colors),

which we label as red, blue, and green. There are also strong theoretical reasons to believe this, too: due to

the triangle anomaly, the Standard Model is only internally consistent if quarks come in three colors (see

Chapter 4.2 of [5]).
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f123 1
f147 − f156

f246 f257

f345 − f367

1
2

f458 f678

√
3

2

Table 1.1: Structure constants of su(3).

Much of our work in the previous section carries over to explain the color symmetry of QCD. 1 If one is

willing to accept that the quarks transform according to the fundamental representation of some color group

that forms a color triplet qf = (qrf qbf qgf )T , then that group must necessarily be SU(3). (To use technical

jargon, SU(3) is the only semi-simple Lie group with complex irreducible triplets; again, see [5]). The Lie

algebra su(3) of the color group is described by its Lie bracket

[λa, λb] = 2ifabcλc (1.18)

where the λa are the Gell-Mann matrices (i.e., the SU(3) analogs of the SU(2) Pauli matrices). For complete-

ness, the structure constants are given in Table 1.1. As stated before, it is natural to assume (and indeed, it is

the case) that the quarks transform per the fundamental representation of color SU(3):

qaf → q′af =
(
e−iθcλ

c/2
)a

b
qbf (1.19)

The gluons must be in the adjoint representation of SU(3). The easiest way to see this is by considering

the dimensions of the irreducible representations of SU(3). If color charge is conserved, then gluons must

carry away the excess charge; e.g., if qf (r) becomes qf (b), then the outgoing gluon must have quantum

numbers g(r, b). From this, one sees there are 9 possible combinations of color/anti-color combinations

and might assume that there are 9 gluons. However, this cannot be the case: were it so, the color singlet

(rr + bb+ gg)/
√

3 would be ubiquitous in nature, revealing itself as a long-range force between hadrons.

Evidently such particles do not exist, leaving us with 8 gluons [4]. And since there is only one irreducible

representation of SU(3) with dimension 8—the adjoint representation—the gluons must transform per this

representation.

1Technically, only global SU(3) color is a symmetry, as the gauge bosons play an active (dynamical) role in the theory;
thus when we promote this global gauge symmetry to a local one, it is more accurate to describe the resulting local
SU(3) gauge “symmetry” as a gauge redundancy [6].
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The adjoint representation Γ of a Lie algebra can be defined in terms of its structure constants (see

Chapter 3.3 of [7]). That is, Γ[λc]ab = ifacb, so the the gluon fields transform under color as

Aa → A′a =
(
e−iθcf

c
de

)a
b
Ab . (1.20)

The last piece of the QCD Lagrangian to explain is the covariant derivative.

Dµ = ∂µ − ig
λa
2
Aaµ (1.21)

The covariant derivative acts to parallel transport a field from xµ → xµ + εµ in a manner analogous to how

the covariant derivative transports a vector in general relativity (see Chapter 4.1 of [5]). In general relativity,

the derivative is corrected using the Christoffel symbols, which connects different points on the manifold; in

QCD, the extra term accounts for the positional dependence of the gauge. By taking the commutator of the

covariant derivatives, we get the piece of the gauge that is physical,

[Dµ, Dν ] =
λa
2
Gaµν . (1.22)

In principle, one could check that the QCD Lagrangian is invariant under the transformations qf → q′f

and A → A′ as defined above, but that would be quite unusual. I’ve written the transformations in this

manner only to show the similarity to the Lorentz group representations. (For the conventional approach, see

e.g. Chapter 2.1 of [8].)

Lattice QCD

Central to lattice QCD is the path integral formulation of QFT. Recall that the correlation function of two

operators can be written

〈O2(t)O1(0)〉 =
1

Z0

∫
D[q, q]D[A] eiSQCD[q,q,A]O2[q, q, A]O1[q, q, A] (1.23)

where the integral is over each of the six quark flavors

D[q, q] =
∏

f∈{u,d,s,c,b,t}

D[qf , qf ] , (1.24)
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the partition function Z0 is just the integral without the operators

Z0 =

∫
D[q, q]D[A] eiSQCD[q,q,A] , (1.25)

and the QCD action is integrated from 0 to t (and over space)

SQCD =

∫ t

0
d4xLQCD . (1.26)

Unlike the path integral formulation of quantum mechanics, in QFT the degrees of freedom are no longer

points in space but the fields (which themselves are positioned at some point in space). In quantum mechanics,

we think of the path integral as being some sort of weighted average for a particle to get from xA to xB ,

following every conceivable path. In QFT, the fields already permeate ever point in space—rather than have

the fields move, they fluctuate like springs on a mattress, with each fluctuation contributing to the likelihood

that an excitation—a particle—flows from xA to xB .

The need for lattice QCD stems from the running of the coupling constant in QCD. At high energies, we

can approximate the coupling constant as

αS(Q2) =
g2(Q2)

4π
≈ 4π

β0 log(Q2/Λ2
QCD)

(1.27)

where ΛQCD is the QCD scale and Q2 is the momentum transfer. However, as
√
Q2 → ΛQCD ∼ 200 MeV

(i.e., for temperatures below ΛQCD/kB ∼ 1012 ◦C), the coupling constant blows up [9] (in fact, this is how

we can define ΛQCD). Consequently, perturbative methods fail in this regime: if we were to expand our path

integral in terms of Feynman diagrams, the more complicated diagrams (those with more vertices) would

actually contribute more greatly than the simpler ones; stated another way, at low energies we can no longer

think of a nucleon as being composed of naught but three quarks. A nucleon is something much messier,

constantly interacting with a sea of virtual quarks and gluons.

Without perturbative methods, we instead evaluate the path integral directly. Analytically, this task is

almost certainly futile—with the exception of a few important cases, there is a no general schema for solving

the path integral. Instead, we make a couple approximations: (1) we replace the infinite dimensional path

integral with a finite dimensional integral by discretizing the location of the fields, forcing them to points on
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a lattice; and (2) rather than integrate over all of space, we integrate over a finite (and periodic) volume of

space.

In fact, theoretically we’re on better footing than we might expect: these two assumptions are regulators

of the continuum field theory. The former serves as an ultraviolet cutoff (there can be no particles with

momenta smaller than the lattice spacing), and the latter serves as an infrared cutoff (there can be no particles

with momenta greater than twice the box length).

With these modifications of the path integral in mind, let’s rewrite our path integral for the lattice.

Splitting up the QCD action, the fermionic part becomes

SF [q, q, A] =

∫
d4x q(x)

[
iγµ

(
∂µ − ig

λa
2
Aaµ(x)

)
+m

]
q(x) (1.28)

→ a4
∑
n∈Λ

q(n)

(
γµ
Uµ(n)q(n+ µ̂)− U−µ(n)q(n− µ̂)

2a
+mq(n)

)
= SF [q, q, U ] . (1.29)

Here we have introduced the link variables Uµ, which we will explain shortly. If we temporarily turn

off the gluons, the free fermionic action is obtained by taking Uµ → 1. In particular, we have that

∂µq(x)→ (q(n+ n̂)− q(n− n̂))/2a, i.e. the partial derivative becomes the central difference. 2 So what

about the link variables?

As mentioned previously, the covariant derivative Dµ (and its lattice equivalent) serves to parallel

transport a field from one location to another. In particular, under a gauge transformation Ω ∈ SU(3), we take

q(n)→ q′(n) = Ω(n)q(n) , q(n)→ q′(n) = q(n)Ω(n)† . (1.30)

Clearly the mass term remains invariant under such a transformation. However, the kinetic term does not.

q′(x)Dµq
′(x)→ q′(n)

[
q′(n+ µ̂)− q′(n− µ̂)

2a

]
+ parallel transport (1.31)

= q(n)Ω(n)†
[

Ω(n+ µ̂)q(n+ µ̂)− Ω(n− µ̂)q(n− µ̂)

2a

]
+ parallel transport (1.32)

(The gauge terms Ω(n)†Ω(n+ µ̂) need not cancel since, in general, we can have a different transformation at

each point on the lattice.) To ensure that the kinetic term remains invariant under a gauge transformation, we

2The central difference, compared to the forward or backward difference, has the advantage of introducing errors at
O(a2) instead of O(a).
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n+ν̂
•

n+µ̂+ν̂
•

Uµν

•
n

•
n+µ̂Uµ

U−µ

UνU−ν

Figure 1.1: Plaquette Uµν .

introduce link variables Uµ(n) such that

Uµ(n)→ U ′µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)† . (1.33)

By including these variables (and noting that U−µ(n) = Uµ(n − µ̂)†), we see that the fermionic action is

invariant under a transformation {q, q, Uµ} → {q′, q′, U ′µ} .

Finally, as a point on terminology, we note that the link between adjacent lattice sites can alternatively be

written in matrix notation as

SF [q, q] = a4
∑

n1,n2∈Λ

qn1
Dn1n2qn2 . (1.34)

In the lattice literature, such a matrix Dn1n2 is referred to as a Dirac operator.

Before we consider the gluonic part of the QCD action, it’s worth asking: what happened to the gauge

fields Aµ? As it so happens, if we write

Uµ(n) = eiaAµ(n) = 1 + iaAµ(n) +O(a2) (1.35)

and substitute this definition of Uµ into (1.29), we recover the (discretized) version of the fermionic action

with the original gauge fields. But using Uµ instead of Aµ isn’t merely some book-keeping trick; it amounts

to a change in the degrees of freedom in our theory, effecting us to change the measure in our path integral:

D[q, q]D[A]→ D[q, q]D[U ]. 3

3That is, we have changed from using algebra-valued fields to group-valued fields; see Chapter 2.2 of [8].
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Continuing with our discussion on how to discretize the QCD action, we now write the gluonic part.

SG[U ] =
1

4

∫
d4xGaµνG

µν
a (1.36)

→ 2
∑
n∈Λ

∑
µ<ν

Re tr [1− Uµν(n)] = SG[U ] (1.37)

Central to understanding this action is the plaquette, defined as

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂) (1.38)

= Uµ(n)Uν(n+ µ̂)Uµ(n+ ν̂)†Uν(n)† . (1.39)

(See Fig. 1.1.) Using the gauge transformation for link variables given above, it’s easy to verify that the

plaquette is gauge invariant.

We should check that the discretized gluonic action written in terms of the link variables Uµ reduces

to the gluonic action written in terms of the gauge fields Aµ. By substituting in Uµ(n) = exp(iaAµ(n)),

employing the Baker-Campbell-Hausdorf formula, and Taylor expanding the gauge fields (e.g., Aν(n+ µ) =

Aν(n) + a∂µ(n) +O(a2)), we eventually find that

Uµν(n) = exp
[
ia2Gµν(n) +O(a3)

]
(1.40)

≈ 1 + ia2Gµν(n) (1.41)

and thus

SG[A] ≈ 1

4

∑
n∈Λ

Re
{

1−
(
1 + ia2Gµν(n)

)a (
1 + ia2Gµν(n)

)
a

}
(1.42)

=
a4

4

∑
n∈Λ

Gaµν(n)Gµνa (n) (1.43)

as expected.

At this point, one might think we’re finished. We have managed to discretize the path integral, reducing

the number of integrals from infinity to some finite number. However, a typical lattice has something like

324 ≈ 106 lattice sites—far too many for us to perform directly. Instead we can only estimate the path

integral using Monte Carlo techniques.
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There is a snag, however; the exponential in (1.23) is imaginary, meaning that the phase will also matter

when sampling, leading to the emergence of a sign problem. To get around this issue, we perform a Wick

rotation, taking t → it. The exponential therefore becomes real, with such a path integral known as a

Euclidean path integral. Now the expectation value of observables (as well as correlator of observables) can

be calculated.

〈O〉 =
1

N

∑
{q,q,U}

O[q, q, U ] where {q, q, U} ∼ e−S[q,q,U ] (1.44)

That is, we generate a particular field configuration with probability proportional to e−S[q,q,U ]. We can ensure

that a field configuration is generated per the correct distribution by using the Metropolis algorithm, e.g.

Further details are available in Chapter 4 of [8].
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Effective theories applied to quantum fields

Although one could, given near infinite resources, calculate the motion of a Frisbee from the Standard

Model Lagrangian, one does not need to understand quantum field theory to understand Newtonian mechanics.

Indeed we often have a clear separation of scales, which allows one to be a veterinarian, for example, without

being a nuclear physicist.

In physics vernacular, we can integrate out the irrelevant degrees of freedom that are inaccessible at a

particular scale. The resulting description of physics is known as an effective theory. When this concept is

applied to quantum field theory, the resulting theory is known as an effective field theory.

Lattice practitioners typically employ effective field theories in their work. By definition, the lattice can

never produce data at the physical point, as that would require calculations at zero lattice spacing and infinite

volume—clearly an oxymoron. At a minimum we must extrapolate to the infinite volume and continuum

limit. Moreover, despite the fact that we could spend all of our computational resources generating data near

the physical u- and d-quark masses, it is significantly cheaper to generate lattice data with the u- and d-quark

masses tuned to larger values. Thus we typically extrapolate in the quark masses, too. Effective field theory,

particularly chiral perturbation theory, serves as the tool for guiding these extrapolations.

Effective theories

Before defining an effective field theory, we first give some examples of effective theories. Although

there is no standard definition for effective theories, effective theories share some common features.1 First, the

effective theory is necessarily incomplete—it is only valid in some regime. Consequently the effective theory

may obfuscate the details of the complete, underlying theory. Second, there should be a clear separation of

scales (e.g., an expansion parameter), so that we may estimate when the effective theory stops being a robust

approximation of the full theory. Finally the effective theory should remain valid for its domain even if we do

not understand the full theory.

1See [10] for alternate sets of desiderata.
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The harmonic oscillator

The harmonic oscillator serves as the most ubiquitous example of an effective theory in physics [11],

with applications ranging from quantum field theory to cosmology. In the 17th century, Robert Hooke used

this law to describe linear-elastic bodies such as springs. Of course, when formulated in a more modern

language, we see that Hooke’s law has much broader applicability. Consider a generic potential V (x) and

expand around the minimum at x0.

V (x) = V (x0) +
d V

d x

∣∣∣∣
x0

x+
1

2

d2V

dx2

∣∣∣∣
x0

x2 +
1

6

d3V

dx3

∣∣∣∣
x0

x3 + · · · (2.1)

Since we are only interested in potential differences, we can ignore the constant term; moreover since we

have expanded about a minimum, the linear term is necessarily 0. Therefore to next-to-leading (NLO) order,

the expanded potential is

V (x0) =
1

2

d2V

dx2

∣∣∣∣
x0

x2 +
1

6

d3V

dx3

∣∣∣∣
x0

x3 + · · · (2.2)

and so long as

x < xcrit = 3

d2V
dx2

∣∣∣
x0

d3V
dx3

∣∣∣
x0

(2.3)

the leading order (LO) term will dominate. For convenience, let us write 1
2
d2V
dx2

∣∣∣
x0

= k1, and so forth, and

w2
1 = k1/m, and so forth. Then

mẍ = −k1x− k2x
2 , (2.4)

or perhaps more suggestively,

ẍ = −ω2
1x (1 + Λx) . (2.5)

In the limit where Λx→ 0, it is straightforward to calculate the period (T → 2π/ω1). Thus given some

measurements of the period, we could determine the parameter w1 in our effective theory. But how do we

know whether this single parameter sufficiently describes our theory at the scale at which we’re working?

With a little bit of thought, we realize that although the LO term is restoring, the NLO term has a preferred

direction. Therefore if the NLO term cannot be neglected, there will be an asymmetry in the amount of time

for the system to pass between the turning points t1 and t2, depending on whether the system is evolving

from t1 → t2 or t2 → t1.
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If these half-periods are the same, we have good reason to suspect that this single-parameter effective

theory is sufficient. Of course, it could be the case that there exist symmetries in the system (e.g., parity) that

preclude the NLO term while leaving higher order terms in tact.

Newtonian gravity from the weak field approximation

Let us now consider Newtonian gravity as an effective theory of general relativity via linearized grav-

ity [12]. Let us work in the regime where:

1. test particles are slow compared to the speed of light (v � c),

2. the gravitational field is weak, and

3. the bodies are rigid.

Because the gravitational field is assumed to be weak, we perturbatively expand around the Minkowski

metric,

gµν = ηµν + hµν , (2.6)

with signature ηµν = diag(−1, 1, 1, 1). Let us suggestively write



h00 h01 h02 h03

h10 h11 h12 h13

h20 h21 h22 h23

h30 h31 h32 h33


=



−2φ A1 A2 A3

A1 0 0 0

A2 0 0 0

A3 0 0 0


. (2.7)

Here we have used the rigid body assumption to set the hij components equal to zero, as these components

would ultimately correspond to shear forces in the body.

Next we solve the geodesic equation,

d2xλ

d τ2
+ Γλµν

d xµ

d τ

d xν

d τ
= 0 , (2.8)

for this metric. In the slow-moving limit, the timelike part of the derivative dominates: d x
0

d τ ≈ ei, so d2x0

d τ2
≈ 0.

We concentrate on the derivative with respect to the spacial indices, d
2xi

d τ2
≡ ẍi.
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Solving the geodesic equation requires us to evaluate the Christoffel symbols, which parameterize the

parallel transport of vectors.

Γλµν =
1

2
gλσ (∂νgσµ + ∂µgσν − ∂σgµν) (2.9)

≈ 1

2
ηλσ (∂νhσµ + ∂µhσν − ∂σhµν) (2.10)

In particular,

Γi00

d x0

d τ

d x0

d τ
= (∂0Ai + ∂iφ) ei → ∂tA+∇φ ,

2Γij0
d xj

d τ

d x0

d τ
= (∂jAi − ∂iAj) ẋjei → −ẋ× (∇×A) .

We ignore the terms associated with the Γkij Christoffel symbols as these will be suppressed by factors of

(v/c)2. Combining everything gives us

ẍ = − (∂tA+∇φ) + ẋ× (∇×A) . (2.11)

The first term is the familiar Newtonian potential for the correct choice of gauge (∂tA = 0). When

∇2φ ∼ ρ (the matter density), we recover Newton’s law of universal gravitation. This is the gravitoelectric

field, to make an analogy to electromagnetism.

More curious is the second term, corresponding to the gravitomagnetic field. Here we see that the

effective theory provides an insight lacking in Newton’s formulation of gravity. Like the magnetic field, the

gravitomagnetic field is velocity-dependent, but it is suppressed compared to the gravitoelectric field by a

factor of v/c. More generally there exists a gravitational analog to Maxwell’s equations, which was first

recognized by Heaviside in the 19th century even before the advent of relativity [13].

An estimate for the gravitomagnetic field of the earth can be found by analogy to the magnetic field

generated by a rotating ball of uniform volume charge density; the only difference between the two expressions

will be the constant prefactors. Taking the electromagnetic solution [14] and replacing the constants by

dimensional analysis, we expect the gravitomagnetic field above Earth to be

Bg(r, θ) ∼
GMR2ω

c2r3

(
2 cos θ r̂ + sin θ θ̂

)
(2.12)
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with θ the latitude, and so the strength of the gravitomagnetic acceleration on the surface should be roughly

GMω2/c2 ∼ 10−12g. Gravity Probe B verified the presence of the gravitomagnetic field by measuring the

Lense-Thirring precession of the Earth [15].2

Effective field theories

In an effective field theory, one posits that the ultraviolet physics of the full theory are suppressed below

a scale Λ, where often Λ ∼M is the mass of the lightest particle excluded by the theory. By the uncertainty

principle, these particles will not be able to propagate far, so their interactions will appear point-like. One

then constructs the most general Lagrangian compatible with the symmetries of the full theory and matches

(or measures) the coefficients of the effective Lagrangian.

Unlike a quantum field theory, which is renormalizable, an effective field theory need not be. Instead the

Lagrangian becomes a tower of infinitely many terms organized by an expansion in the scale. Consider the

following contrived extension of φ4-theory which will demonstrate the principles of effective field theories.

Lfree =
1

2
(∂µφ)2 − 1

2
m2φ2 + λφ4 (2.13)

Since we require the action be dimensionless, it is straightforward to see that the operators have mass

dimension [
(∂µφ)2

]
= 4 and [φ] = 1 . (2.14)

Under the effective field theory philosophy, we include all irrelevant combinations of these operators (i.e.,

combinations with mass dimension greater than 4). Consequently the prefactors must have negative mass

dimension (here the cn,m coefficients are dimensionless low energy constants).

Leff =
1

2
(∂µφ)2 − 1

2
m2φ2 + λφ4 +

∞∑
n=5

4m≤n∑
m=0

cn,m
Λn−4

(∂µφ)2m φn−4m (2.15)

If the theory is “natural” each coefficient will be O(1), with the higher order terms being suppressed by

additional powers of Λ. We can further reduce the number of terms in this expansion by imposing symmetry

2In fact, the gravitomagnetic field equals half the Lense-Thirring precession, as described in Chapter 12 of [16].
(Unfortunately for most of us, the reference is in German. However, the derivation is still surprisingly intelligible,
assuming you know the starting point and conclusion.)
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constraints; for instance, if we require φ to be parity invariant, then the terms with odd powers of φ would

drop out.

Two scalar fields

Although the previous example shows the elements of an effective field theory, it is unclear what Λ

should be. Let us now consider the simplest non-trivial effective field theory: two free scalar fields, φ and

ρ, with an interaction term [17, 18]. Let us further assume that the ρ field is much heavier than the φ field,

M � m. The full Lagrangian is

L =
1

2
(∂µφ)2 +

1

2
(∂µρ)2 −m2φ2 −M2ρ2 + κφ2ρ . (2.16)

(Note [κ] = [m] = [M ] = 1.) Recall that under the path integral formulation observables are weighed by a

factor of exp(iS[φ, ρ]). When Λ�M , we expect the heavy scalar field to have little influence in mediating

interactions. We would therefore like to integrate-out the heavy field so that we have an effective field theory

involving only the light field. That is,

eiSeff[φ] ≈
∫
D[ρ]eiS[φ,ρ] . (2.17)

If we Wick rotate (iS → −S), it is clear that the weight is maximal when δS/δρ = 0.

δS

δρ
=

∫
d4x

[
−∂2φ

δφ

δρ
− ∂2ρ− 2m2φ

δφ

δρ
− 2M2ρ− κ

(
φ2 + 2φρ

δφ

δρ

)]
= 0 (2.18)

Since δφ/δρ = 0, we require (
∂2

2M2
+ 1

)
ρ0 = − κφ2

2M2
. (2.19)

We expand the solution perturbatively,

ρ0 = −
[

1− ∂2

2M2
+

(
∂2

2M2

)2

− · · ·
]
κφ2

2M2
, (2.20)
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and reinsert the solution into our original Lagrangian.

Leff =
1

2
(∂µφ)2 +

1

2

(
∂µ

{[
1− ∂2

2M2
+

(
∂2

2M2

)2

− · · ·
]
κφ2

2M2

})2

(2.21)

−m2φ2 −M2

([
1− ∂2

2M2
+

(
∂2

2M2

)2

− · · ·
]
κφ2

2M2

)2

+ κφ2

[
1− ∂2

2M2
+

(
∂2

2M2

)2

− · · ·
]
κφ2

2M2

As written there are many redundant terms. For concreteness, let us write out the first few terms to this

effective Lagrangian Leff = L0 + L1 + · · · .

Lfree
0 =

1

2
(∂µφ)2 −m2φ2 (2.22)

Lint
0 = − κ

4M
φ4 +

κ

2M
φ4 (2.23)

=
κ

4M
φ4

ML1 = 0 (2.24)

M2L2 =
κ2

2M2

(
φ2 (∂µφ)2

)
+

κ2

2M2

(
φ2 (∂µφ)2 + φ3∂2φ

)
(2.25)

− κ2

M2

(
φ2 (∂µφ)2 + φ3∂2φ

)
= − κ2

2M2
φ3∂2φ

The second derivative is a bit awkward, but fortunately we can recast it as something more quotidian.

Because ∂µ(φ3∂µφ) = φ3∂2φ+ 3φ2(∂µφ)2, and because observables are insensitive to adding a gradient to

the action, we can replace φ3∂2φ with −3φ2(∂µφ)2 in the Lagrangian. Yet even these choices aren’t unique.

Shifting the irrelevant operators by a term proportional to an equation of motion is equivalent to redefining

the fields, which by the equivalence theorem will have no impact on scattering calculations [19]. From the
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Euler-Lagrange equations, we see that

∂2φ = −2mφ2 + 2κρφ , (2.26)

with the second term contributing at a higher order than the first, thus allowing us to equivalently write

M2L2 ∼ φ6.

Regardless, let us reconsider the generic scalar effective Lagrangian from before, (2.15). In that case, we

took a “bottom-up” approach, in which we constructed our EFT without specifying the full theory. In this

case we have taken a “top-down” approach, in which we started with a theory involving two scalar fields and

integrated-out the heavy one. Indeed, we see that the bottom-up Lagrangian (2.15) could also describe the

top-down Lagrangian (2.22) by matching coefficients.

The Standard Model?

Some physicists (e.g., [20, 21]) have argued that the Standard Model itself is an effective field theory.

Recall that when constructing a quantum field theory, we expect the theory to be renormalizable. As a

practical matter renormalizable theories are convenient, as observables can be calculated at any scale using

only a finite number of parameters. Let us contrast this approach with the effective field theory approach.

When constructing an effective field theory, we write down the most general Lagrangian compatible with the

symmetries/gauge redundancies of the system. This Lagrangian will generally include irrelevant terms which

will not be renormalizable.

The Standard Model is a renormalizable theory. Consequently we can calculate observables from

this Lagrangian at any scale without encountering unphysical divergences (whether we might have other

difficulties in this calculation is a separate matter). But how can we know whether the predictions at, for

example, 1020 GeV are correct without an experimental check? Perhaps there are non-renormalizable terms

that must be added to the Standard Model to make the correct prediction. Indeed, history teaches that the

“full theory” of yesteryear becomes the effective theory of today.

Of course, if the Standard Model is better thought of as an effective field theory, we would like to know

the scale ΛSM at which the renormalizable part of the theory breaks down. One possible candidate for ΛSM

comes from neutrinos. When the Standard Model was originally formulated, experimental data suggested a
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neutrino mass compatible with zero, an (incorrect) assumption that was then baked into the Standard Model

Lagrangian. There are a few ways to cure this deficiency, but let’s focus on an EFT approach.

There is only a single dimension-5 operator that can be added to the Standard Model while preserving

the SU(3)×SU(2)×U(1) gauge group [21, 22, 23]. To wit, it is the Weinberg operator

L5 =
1

Λ

∑
f,f ′

cf,f ′
(
Lf · H̃

)(
H̃† · Lf ′

)c
+ h.c. (2.27)

Here L = (νL, lL)T and H = (φ+, φ0)T are doublets of SU(2) weak isospin with sums over flavor

f, f ′ = e, µ, τ . Expanding this term in the unitary gauge H = (0, h+ v), we see there is a term proportional

to (v2/Λ)νν, where v ∼ 100 GeV is the vacuum expectation value of the Higgs. Assuming the dimensionless

coupling is order c ∼ 1 and the heaviest neutrino mass is mν ∼ 0.1 MeV, we can estimate the EFT scale to be

ΛSM ∼ 1014 GeV—but only if such an interaction actually occurs in nature. Violation of B − L conservation

would be evidence for such a term, as the Weinberg operator does not preserve this number.
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Chiral Perturbation Theory

We previously constructed an effective field theory from two scalar fields by integrating out the heavy

scalar. In that approach, we assumed that the heavy scalar varied slowly compared to the light scalar, which

allowed us to remove the heavy scalar by assuming the action remained stationary under variations of this

field. Unfortunately, this procedure is untenable in low-energy QCD: we do not know how to integrate out

the quarks and gluons in the theory since the theory is non-perturbative in this regime.

However, that is only one technique for constructing an effective field theory. One can alternatively

begin with the observed degrees of freedom and subject them to the symmetry restraints (or in our case, the

approximate restraints) of the full theory. This is the approach we will take to construct chiral perturbation

theory, a low-energy effective field theory for QCD in which the degrees of freedom of the full theory (the

quarks) are replaced with the degrees of freedom at low energy (light hadrons). 1

The meaning of chirality

Let us revisit the QCD Lagrangian.

L =
∑
f

qf (iγµDµ −mf ) qf −
1

4
GaµνG

µν
a (3.1)

The spin-1
2 field qf is a complex bispinor built from two Weyl spinors. We can get an intuition for each

of these spinors by considering how they behave under rotations and boosts. Recall from Chapter 1 that

spin-1
2 fields transform as

ψα(x)→ ψ′α(x) =
(
e−iωµνS

µν)α
β
ψβ(Λ−1x) . (3.2)

1The author found the following references useful for understanding the topics covered in this chapter: [24, 25, 26, 27,
28, 29, 30, 31].
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where Sµν = i
4 [γµ, γν ]. Let us explicitly write the γ-matrices in the Weyl/chiral basis. 2

γ0 Weyl
=

0 1

1 0

 γk
Weyl
=

 0 σk

−σk 0

 (3.3)

Here σk denotes the familiar Pauli matrices. Rotations occur when µ, ν ∈ {1, 2, 3}; boosts occur when either

µ = 0 or ν = 0. For example, we can explicitly write a rotation by ω12 = ω in the xy-plane as

(
e−iω12S12

)α
β

Weyl
=

e−iωσ3/2 0

0 e−iωσ3/2

 . (3.4)

We observe the two Weyl spinors behave identically under rotations. (However, it is worth noting that the

factor of 1/2 means that a spinor must be rotated by 4π to return to its original state; this is one manner in

which spinors can be distinguished from vectors.)

The situation with boosts is slightly different. Boosting in the x-direction by ω01 = χ, we have

(
e−iω01S01

)α
β

Weyl
=

e−iχσ1/2 0

0 e+iχσ1/2

 . (3.5)

Here we see that the two Weyl spinors can be distinguished under boosts. Formally, we say that the

representation for Dirac bispinors is reducible. Which representation a spinor belongs to can be thought of as

just another quantum number; we call this quantum number chirality.3

We can project out the chiral components of a Dirac bispinor through the “fifth” γ-matrix, defined as

γ5 = iγ0γ1γ2γ3 Weyl
=

−1 0

0 1

 . (3.6)

2Identities involving the gamma matrices and projection operators (defined later in this section) are available in
Appendix A.

3Although chirality can be related to helicity, they are conceptually different; helicity is frame-dependent for massive
particles, whereas chirality is Lorentz-invariant.
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Writing ψ = (ψ(L), ψ(R))T , we define the projection operators PL/R = 1
2(1∓ γ5). Thus

ψ =
1

2
(1− γ5)ψ︸ ︷︷ ︸
ψL=PLψ

+
1

2
(1+ γ5)ψ︸ ︷︷ ︸
ψR=PRψ

(3.7)

where ψL = (ψ(L), 0)T and ψR = (0, ψ(R))T .

To understand why this quantum number is known as chirality, let us consider how ψ = ψL + ψR

transforms under the parity operator P . Recall that P reverses momentum while leaving spin intact. From

Eqs. 3.4 and 3.5, we see that both ψL and ψR transform identically under rotations (spin) but oppositely

under boosts (momentum). Thus, we require

P :

ψ(L)(x, t)

ψ(R)(x, t)

→
ψ(R)(−x, t)

ψ(L)(−x, t)

 (3.8)

This is, under P , the components of the Dirac bispinor are swapped. A spinor that once transformed under a

left-handed coordinate system now transforms under a right-handed one.

Global symmetries in QCD beyond color

Additional symmetries arise in QCD through acting on the quarks in flavor space, rather than acting

in color space. Let us rearrange the quark fields into a vector q = (q1, . . . , qN )T and the mass terms into a

diagonal matrix M = diag(mq1 , . . . ,mqN ) while generalizing the 6 flavors of QCD to N flavors. The QCD

Lagrangian now becomes

LQCD = q (iγµDµ −M) q − 1

4
GaµνG

µν
a (3.9)

We will see that certain global transformations can mix flavors, depending on our assumptions about M .
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U(1) vector symmetry

The simplest global flavor symmetry comes from a U(1) transformation, which is trivially seen to leave

the vectorized QCD Lagrangian invariant.

q → q′ = eiαq (3.10)

q → q′ = e−iαq

The significance of this symmetry can be gleaned by analyzing the associated Noether current.

αV µ = −
(
∂L
∂∂µq

δq +
∂L
∂∂µq

δq

)
= − (qiγµ) (iα) + 0

=⇒ V µ = qγµq (3.11)

We see that this current transforms as a vector, hence the name. When we calculate the charge,

QV =

∫
d3xV 0 =

∫
d3x qγ0q =

∫
d3x q†q , (3.12)

we find that we have a volume integral of a number density. This number counts the total number of

quark minus antiquarks, from which we conclude that the vector current is associated with baryon number

conservation.

U(1) axial symmetry

The axial U(1) transformation is defined similarly as the vector transformation except with the inclusion

of the γ5 matrix.

q → q′ = eiαγ
5
q (3.13)

q → q′ = e−iαγ
5
q
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Although the kinetic term preserves the symmetry in the Lagrangian, the mass term does not.

qγµDµq → q′γµDµq
′ = qeiαγ

5
γµeiαγ

5
Dµq = qγµDµq

qMq → q′Mq′ = qeiαγ
5
Meiαγ

5
q = qe2iαγ5Mq

Thus except when M = 0, the U(1) axial transformation is not a global symmetry. Regardless, we can

calculate the current anyway.

Aµ = qγµγ5q (3.14)

We observe that this current transforms as an axial vector, hence the name. Unsurprisingly, the axial current

is not conserved; in fact, an additional term must be included in the divergence due to a quantum anomaly.

SU(N ) vector symmetry

Unlike the other global transformations defined so far, the SU(N) vector symmetry mixes the flavor of

the quarks.

qa → q′a =
(
eiθcT

c
)a
b
qb (3.15)

qa → q′a =
(
e−iθcT

c
)a
b
qb

That is, the quark fields transform under the fundamental representation of SU(N ), with the T a being the

generators of the su(N) Lie algebra and N being the number of flavors. As written, this is nearly identical to

the SU(3) color transformation from Section 1.1.3, but we emphasize this is a transformation in flavor space,

not color space.

The SU(N ) vector symmetry only holds so long as m1 = m2 = · · · = mN . Clearly this is not a good

approximation in QCD generally, as the first generation quarks have mu ∼ md ∼ 1 MeV while the third

generation quarks have mt � mb � 1 GeV. Instead one usually restricts themselves to SU(2) or SU(3)

flavor symmetry (the former, of course, is more commonly referred to as isospin). In fact, the mass of the

first three quarks is smaller than the lightest bound states of hadrons (as well as ΛQCD ∼ 300 MeV), so these

approximations tend to hold fairly well.
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For completeness’s sake, the currents and divergences are given by

V µ,a = qγµT aq , (3.16)

∂µV
µ,a = iqγµ[M,T a]q . (3.17)

AlthoughM and T a do no generally commute, they do commute when T a is diagonal. For example, when

N = 2 the generator T 3 → σ3 (the third Pauli matrix) commutes withM , so the current V µ,3 ∼ uγµu−dγµd

is conserved. The corresponding charge is, of course, isospin. Similarly forN = 3, the currents corresponding

to T 3 → λ3 and T 8 → λ8 (the third and eighth Gell-Mann matrices) are conserved. The current V µ,3 is the

same as before, and V µ,8 ∼ uγµu+ dγµd− 2sγµs, with QV8 known as hypercharge. Generally speaking,

isospin and hypercharge can be used to arrange the hadrons into multiplets, even when SU(3) flavor symmetry

is only approximate. This is the realization of Gell-Mann’s eightfold way [32] at the level of quarks.

SU(N ) axial symmetry

Similarly, we consider the SU(N ) axial transformation

qa → q′a =
(
eiγ

5θcT c
)a
b
qb (3.18)

qa → q′a =
(
e−iγ

5θcT c
)a
b
qb

with currents and divergences

Aµ,a = qγµγ5T aq , (3.19)

∂µA
µ,a = iqγµγ5{M,T a}q . (3.20)

Notice that the commutator [·, ·] from the previous section has been replaced by an anticommutator {·, ·}, so

the divergence never vanishes for any of the generators unless M = 0.

The divergence is known as the partially conserved axial current (partially since, were it not for the

non-zero quark masses, the conservation would be exact). Gell-Mann and Lévy [33] showed that this current

can be used to explain the decay rate of the charged pion, albeit with the problem formulated in terms of an
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effective model for the pions and nucleons (this was before Gell-Mann and Zweig proposed the quark model).

We will return to this point later.

SU(N)L×SU(N)R chiral symmetry

As an alternate approach to SU(N)V × SU(N)A, we can instead consider the Lagrangian from a chiral

perspective. Projecting out the chiral components, Eq. (3.9) becomes

LQCD = qL (iγµDµ) qL + qR (iγµDµ) qR − qLMqR − qRMqL −
1

4
GaµνG

µν
a . (3.21)

We now consider the following transformations of the quark fields.

qaL → q′aL =
(
eiθc,LT

c
)a
b
qbL qaR → q′aR =

(
eiθc,RT

c
)a
b
qbR (3.22)

qaL → q′aL =
(
e−iθc,LT

c
)a
b
qbL qaR → q′aR =

(
e−iθc,RT

c
)a
b
qbR

We emphasize that the transformations occur in different spaces, i.e. [UL, UR] = 0 for UL ∈ SU(N)L and

UR ∈ SU(N)R. We observe see that the kinetic terms maintain the symmetry, while the mass terms explicitly

break it. When SU(N)L = SU(N)R, the symmetry reduces to SU(N)V .

We can recast the SU(N)V and SU(N)A currents from before in terms of the chiral fields.

V µ,a = qγµT aq

= qLγ
µT aqL + qRγ

µT aqR

= V µ,a
L + V µ,a

R
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Here we have used an identity from Appendix A and defined V µ,a
L/R = qL/Rγ

µT aqL/R. The SU(N)A currents

are slightly trickier.

Aµ,a = qγµγ5T aq

= qγµ(PR − PL)T aq

= qγµ(P 2
R − P 2

L)T aq

= q(PLγ
µPR − PRγµPL)T aq

= V µ,a
R − V µ,a

L

Spontaneous symmetry breaking of SU(N)L×SU(N)R

A review of Goldstone’s theorem

Goldstone’s theorem tells us that if a continuous symmetry is preserved by the Lagrangian but broken by

the vacuum, then there exists a massless boson for each broken generator of that symmetry.

To sketch the proof, 4 let us suppose that Qa is the conserved charge corresponding to some continuous

symmetry of the Lagrangian as guaranteed by Noether’s theorem. In the language of quantum mechanics, this

means that the Hamiltonian H commutes with Qa, [H,Qa] = 0. Furthermore, when acting on the vacuum

H|Ω〉 = 0 up to some constant (i.e., take H → H + c if required).

We assume that the vacuum is not invariant under the symmetry, i.e. Qa|Ω〉 6= 0. This means

[H,Qa]︸ ︷︷ ︸
=0

|Ω〉 = HQa |Ω〉 −QaH |Ω〉︸ ︷︷ ︸
=0

= 0

=⇒ H (Qa |Ω〉) = 0 . (3.23)

That is, the state Qa|Ω〉 has the same energy as |Ω〉. Let us build a state from Qa|Ω〉 =
∫
d3xJa,0(x, t)|Ω〉

with momentum p.

|η〉 =

∫
d3x e−ip·xJa,0(x, t) |Ω〉 (3.24)

4The argument is taken from [34]. However, the explanation provided is not entirely rigorous as it runs afoul of the
Fabri-Picasso theorem: 〈QQ〉 ∼ Vspace → ∞, and therefore Q|Ω〉 does not belong to the Hilbert space unless the
symmetry is unbroken. Nevertheless, the proof can be made rigorous [35].
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But this means that as p→ 0, we require E2 = p2 +m2 → 0, so the particle corresponding to |η〉 must be

massless. The symmetry is said to be spontaneously broken, and for each generator T a there must exist a

massless boson.

The quark condensate

As a candidate spontaneous symmetry breaking, let us consider the quark condensate 〈qq〉. Quarks and

antiquarks are tightly bound by an attractive interaction, so in the chiral limit where mq = 0, the cost for the

vacuum to create a qq-pair is is small. The quark condensate (along with the gluon condensate) therefore

comprise the QCD vacuum.

Under a chiral transformation, the quark condensate becomes

〈qq〉 = 〈qLqR〉+ 〈qRqL〉 . (3.25)

Thus a global transformation under SU(N)L×SU(N)R will change the value of the vacuum, assuming that

〈qq〉 6= 0. (In fact, lattice calculations support our hunch that the quark condensate has a nonzero vacuum

expectation value.) The full chiral symmetry is spontaneously broken by the quark condensate down to just

the vector part, SU(N)L×SU(N)R →SU(N)V , which leaves 〈qq〉 invariant. The broken symmetry is given

by the quotient SU(N)× SU(N)/SU(N) ∼ SU(N) which has N2 − 1 generators, and therefore we expect

there to be N2 − 1 Goldstone bosons. 5

In the case of isospin, we have N = 2, so there are 3 Goldstone bosons. The full theory of QCD does

not contain massless hadrons—but it does contain 3 bosons that are significantly lighter than the rest: the

neutral and charged pions. We recall that, in addition to being spontaneously broken, chiral symmetry is

explicitly broken by a mass term for the quarks. Thus the Goldstone bosons of chiral symmetry breaking are

technically pseudo-Goldstone bosons, which are comparably light but not massless.

In the case of SU(3) chiral symmetry breaking, we identify the kaons and η mesons as pseudo-Goldstone

bosons, too.

5Technically the quotient SU(N)L × SU(N)R/SU(N)V is not a group but a coset space; this distinction will become
important later.
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The linear-σ model

In low-energy QCD, we do not observe quarks and gluons; instead, we see the lightest hadrons—pions

and nucleons, for example. In the 1960s, Gell-Mann and Lévy proposed the linear-σ model to explain the

decay of charged pions [33]. In this model, the neutron and proton belong to an isodoublet N = (p, n)T

transforming under SU(2) isospin. Of course, in those days (prior to the quark model) isospin was understood

in terms of the proton and neutron; but since the valence quark content of each particle is p = uud and

n = udd, the difference between a proton and neutron is the difference between a u and d quark, which can

be described by an approximate SU(2) flavor symmetry.

We see that the kinetic term is invariant under a global transformation of SU(2)V (isospin) and SU(2)A

(here τa are the Pauli matrices).

SU(2)V : Niγµ∂µN → N
′
iγµ∂µN

′ = Ne−iθa
τa

2 iγµeiθa
τa

2 ∂µN = Niγµ∂µN (3.26)

SU(2)A : Niγµ∂µN → N
′
iγµ∂µN

′ = Neiγ
5θa

τa

2 iγµeiγ
5θa

τa

2 ∂µN = Niγµ∂µN (3.27)

However, although the mass term in invariant under SU(2)V , it is not invariant under SU(2)A:

SU(2)V : mNN → mN
′
N ′ = mNe−iθa

τa

2 eiθa
τa

2 N = mNN (3.28)

SU(2)A : mNN → mN
′
N ′ = mNeiγ

5θa
τa

2 eiγ
5θa

τa

2 N = mNNe2iγ5θa
τa

2 (3.29)

Nevertheless, Gell-Mann and Lévy insisted on keeping the full SU(2)V × SU(2)A ' SU(2)L × SU(2)R

symmetry intact. Towards that end, they included a few additional fields in the model, πa and σ, with the πa

fields playing the role of the pions and (as we will see) the σ field providing a mass for the nucleon after

spontaneous symmetry breaking.

We assume that the pion fields transform according to the vector representation of SU(2) and as a

pseudoscalar under Lorentz symmetry. Taken together, we write πa = iψγ5τaψ/2 with ψ a Dirac bispinor.

The field σ will transform under the trivial representation of SU(2) and as a scalar under Lorentz symmetry,

so σ = ψψ. Their transformations are given below.
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SU(2)V : πa → π′a = iψ
′
γ5τaψ′ (3.30)

= iψe−iθb
τb

2 γ5τaeiθb
τb

2 ψ

≈ iψγ5

(
1− iθb

τ b

2

)
τa
(

1 + iθb
τ b

2

)
ψ

= iψγ5

(
τa − iθb

[
τ b

2
, τa
]

+O(θ2)

)
ψ

≈ πa − εabcθbπc

SU(2)A : πa → π′a = iψ
′
γ5τaψ′ (3.31)

= iψeiγ
5θb

τb

2 γ5τaeiγ
5θb

τb

2 ψ

≈ iψ
(

1 + iγ5θb
τ b

2

)
γ5τa

(
1 + iγ5θb

τ b

2

)
ψ

= iψ

(
γ5τa + iθb

{
τ b

2
, τa
}

+O(θ2)

)
ψ

≈ πa + θaσ

Similarly, σ → σ under SU(2)V and σ → σ + θaπ
a under SU(2)A. We would like to build terms into the

linear-σ model Lagrangian that are invariant under the SU(2)V × SU(2)A symmetry using these fields. We

note that the squares of these fields transform as follows.

SU(2)V : π2 → π2 σ2 → σ2 (3.32)

SU(2)A : π2 → π2 − 2σθaπ
a σ2 → σ2 + 2σθaπ

a (3.33)

The kinetic terms (∂µπ)2, (∂µσ)2 also transform the same way (remember that these are global transfor-

mations). Although the square fields individually do not preserve the SU(2)V × SU(2)A symmetry, the

sum σ2 + π2 = |φ|2 does, where we have (for brevity) combined the σ and π fields into the meson matrix

φ = 1σ + iγ5τ · π.

Finally, we note that the term NφN is also invariant under these transformations. Putting everything

together, we have the Lagrangian for the linear-σ model.

L = N (iγµ∂µ − gφ)N +
1

2
|∂µφ|2 − V

(
|φ|2

)
(3.34)
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Notice that we have assumed the pions and σ are massless. We choose the following for our potential, which

will generates a mass for the nucleon.

V
(
|φ|2

)
= −µ

2

2
|φ|2 +

λ

4
|φ|4 (3.35)

= −µ
2

2

(
σ2 + π2

)
+
λ

4

(
σ2 + π2

)2 (3.36)

When µ > 0, the potential is minimized for |φ|2 = µ2/λ, which we assume occurs when σ → v ≡ µ/
√
λ

and πa → 0. Now we perturbatively expand around σ = v + σ̃. Dropping the constant terms from the

Lagrangian, this procedure yields

L =N (iγµ∂µ − gv)N − gN
(
σ̃ − iτ · πγ5

)
N +

1

2

(
(∂µσ̃)2 + (∂µπ)

)2
(3.37)

− µ2σ̃2 − λvσ̃
(
σ̃2 + π2

)
− λ

4

(
σ̃2 + π2

)2
.

After spontaneous symmetry breaking, the pions remain massless, while the nucleon picks up a mass gv.

It is instructive to also view this Lagrangian from the perspective of the chiral SU(2)L × SU(2)R

symmetry. We recall that ψ transforms

ψL → LψL ψR → RψR (3.38)

where L ∈ SU(2)L and R ∈ SU(2)R. Defining Σ = σ + iτ · π, we see that

Σ = σ + iτ · π

= ψ
(

1 + i (τa)2 iγ5
)
ψ

= ψ
(
1− γ5

)
ψ

= ψP 2
Lψ

= ψRψL .

Therefore Σ→ LΣR† under a chiral transformation, making Tr Σ†Σ automatically invariant (as well as

Tr ∂µΣ†∂µΣ). Similar to before, a mass term for the nucleon is not invariant under a chiral transformation as

NN → L†NLNRR+R†NRNLL , but this is easily corrected by inserting a Σ and Σ†, respectively.
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Now we can rewrite the Lagrangian in Eq. 3.34 with the chiral symmetry explicit.

L =NLiγ
µ∂µNL +NRiγ

µ∂µNR − g
(
NLΣNR +NRΣ†NL

)
(3.39)

+
1

4
Tr ∂µΣ†∂µΣ− V

(
Tr Σ†Σ

)

The potential becomes

V
(

Tr
{

Σ†Σ
})

= −µ
4

Tr
{

Σ†Σ
}

+
λ

16
Tr
{

Σ†Σ
}2

(3.40)

with chiral symmetry breaking occurring when Tr Σ†Σ = 2µ2/λ.

An application: charged pion decay

As mentioned previously, Gell-Mann and Lévi introduced the linear-σ model in order to explain the

charged pion decay process π+ → µ+ νµ. We can consider this decay from the perspective of the effective

Fermi interaction in which the role of the W+ boson has been integrated out.

LFermi =
GF√

2

[
uγµ

(
1− γ5

)
d
] [
µγµ

(
1− γ5

)
νµ
]

(3.41)

The associated scattering matrix element can be factorized into a leptonic and hadronic part, with the leptonic

part calculated perturbatively. We focus on the hadronic part, 〈Ω|Aµ|π+〉, in which some current operator

Aµ takes the pion to the QCD vacuum Ω.

In fact, we can use the axial current associated with the linear-σ model for the current operator.

θaA
µ,a = −

(
∂L
∂∂µN

δN +
∂L
∂∂µπ

δπ +
∂L
∂∂µσ

δσ

)
(3.42)

= Nγµγ5θa
τa
2
N − θaπa∂µσ − θaσ∂µπa

Expanding around σ = σ̃ + v, we find

Aµ,a = Nγµγ5 τa
2
N − πa∂µσ̃ − σ̃∂µπa − v∂µπa . (3.43)
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Since the other terms involve either the σ or nucleon, we only expect the last term to contribute to the matrix

element.

〈Ω|Aµ,a|π+〉 = −〈Ω|v∂µπ+|π+〉 = −ivpµe−ip·x (3.44)

We see that v describes the size of this decay process and is referred to as the pion decay constant, fπ. 6

Next we take the divergence.

〈Ω|∂µAµ,a|π+〉 = −fπpµpµe−ip·x = −fπm2
πe
−ip·x (3.45)

In the limit where mπ → 0 the divergence vanishes. Of course, the pion mass is not zero, but it is small

compared to other hadronic scales. For that reason, this is know as the partially conserved axial current.

Chiral perturbation theory

There is a detail in the linear-σ model we have so far skipped over: what exactly is the σ anyway?

Experimentally the closest match seems to be the σ/f0(500) resonance, which is the lightest scalar meson;

however, as it lies just above the two pion threshold, it is highly unstable and difficult to observe—in fact, its

existence has been doubted and reaffirmed multiple times since its initial measurement in the mid-1960s.

To say the σ/f0(500) resonance has been a source of controversy would be an understatement [36].

Fortunately, it is possible to remove the σ meson from the linear-σ model in what is (perhaps misleadingly)

called the nonlinear-σ model, with the leading order term equivalent to the chiral perturbation theory

Lagrangian. However, we will sidestep the construction of the nonlinear model and skip straight to the chiral

Lagrangian from an effective field theory perspective.

6There are two different conventions for the pion decay constant, differing by a factor of
√

2. In this chapter, we use the
convention fπ ≈ 130 MeV; in Chapter 5, we use the convention Fπ ≈ 90 MeV.
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(−2,1)+`• (−1,1)+`• (0,1)+`• (1,1)+`• (2,1)+`• (0, 1) + `

(−2,0)+`• (−1,0)+`• (0,0)+`• (1,0)+`• (2,0)+`• (0, 0) + `

(−2,−1)+`• (−1,−1)+`• (0,−1)+`• (1,−1)+`• (2,−1)+`• (0,−1) + `

Figure 3.1: An example of a coset space. Let G = Z×Z with addition and H = {(n, 0)|n ∈ Z} ⊂ G be
the horizontal line ` running through the origin. Then gH is a line parallel to ` and G/H is the set of all lines
parallel to ` (including itself). This example also demonstrates that cosets are either disjoint (e.g., parallel
lines do not overlap) or overlap entirely (e.g., (0, 0) + ` = (0, 1) + `).

Like taxes, inevitable group theory

We recall that the quark condensate (Eq. (3.25)) does not respect chiral symmetry even in the limit of

massless quarks.

SU(N)L : 〈qLqR〉 → L† 〈qLqR〉 (3.46)

SU(N)R : 〈qLqR〉 → 〈qLqR〉R (3.47)

However, the quark condensate does respect flavor transformations, which gives us the following symmetry

breaking pattern.

SU(N)L × SU(N)R︸ ︷︷ ︸
G

→ SU(N)V︸ ︷︷ ︸
H

(3.48)

Coleman et al. showed (with generality) that the Goldstone fields φa distinguish the different elements of

the coset space G/H = {gH|g ∈ G} [37, 38]. (See fig. 3.1.) The proceeding algorithm for constructing an

effective field theory from a spontaneously broken symmetry is known as coset construction.

We will now sketch the procedure and its consequences (see either [24] or [39] for another perspective).

Let Φ = (φ1, . . . , φn), where n = dim G − dim H is the number of Goldstone bosons, correspond to a

configuration of the fields transformed from the Goldstone vacuum, Φ0 by g ∈ G. (We note that this is a

map Φ : R3,1 → Rn taking Minkowski space to the field values). Denote the collection of all possible maps
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V = {Φ|Φ0
g→ Φ ∀g ∈ G}. Intuitively, we can think of Φ as corresponding to the QFT “mattress” of the

Goldstone fields and the space V as corresponding to all possible mattresses.

Typically a transformation by g ∈ G changes the mattress: Φ
g→ Φ′; however, if the mattress is in a

vacuum configuration Φ0, a transformation by h ∈ H will keep the mattress in a vacuum configuration:

Φ0
h→ Φ0. In a moment, we will encode this information in the group action ϕ : G× V → V

ϕ(e,Φ) = Φ (3.49)

ϕ(g, ϕ(g′,Φ)) = ϕ(gg′,Φ) (3.50)

where e, g, g′ ∈ G and e is the identity element. Note that the group action is not necessarily a representation

of the group since we do not require the group action be linear.

The statement that only transformations by h ∈ H leave the vacuum unchanged subjects the group

action to the requirements ϕ(h,Φ0) = Φ0 for h ∈ H and ϕ(g,Φ0) 6= Φ0 for g /∈ H . Consequently, if the

transformations f = gh, f ′ = gh′ ∈ gH belong to the same coset, then they will transform the vacuum in

the same way, Φ0
f→ Φ′

f ′← Φ0, since

ϕ(f,Φ0) = ϕ
(
fh−1, ϕ(h,Φ0)

)
= ϕ(g,Φ0)

= ϕ
(
f ′h′−1, ϕ(h′,Φ0)

)
= ϕ(f ′,Φ0) .

Moreover, if the transformations belong to different cosets, f ∈ gH 6= g′H 3 f ′, then the vacuum

transforms differently under each, Φ0
f→ Φ 6= Φ′

f ′← Φ0. We prove this by contradiction. Assume (to be

contradicted) that ϕ(f,Φ0) = ϕ(f ′,Φ0). Then

Φ0 = ϕ(e,Φ0) = ϕ
(
f−1,

assume: ϕ(f ′,Φ0)︷ ︸︸ ︷
ϕ(f,Φ0)

)
= ϕ(f−1f ′,Φ0) (3.51)

but this requires f−1f ′ ∈ H =⇒ f ′ ∈ fH = gH , which is inconsistent with our original assumptions.

Combining both of these results with their contrapositives, we conclude that

Φ0
g→ Φ

g′← Φ0 ⇐⇒ gH = g′H . (3.52)
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Thus, given a configuration of the fields Φ, we can classify the transformation by which coset the transforma-

tion belonged to (and vice versa). This is what it means for the Goldstone fields to distinguish the elements

of G/H .

In fact, what we have shown is a specific case of the orbit-stabilizer theorem [40]. In group theory lingo,

Orb(Φ0) =
{

Φ
∣∣∣Φ0

g→ Φ ∀g ∈ G
}

= V (Orbit of Φ0) (3.53)

GΦ0 =
{
g ∈ G

∣∣∣Φ0
g→ Φ0

}
= H (Stabilizer of Φ0) (3.54)

The theorem states that Φ0
g→ Φ

g′← Φ0 if and only if gH = g′H . A consequence of this theorem is that the

map ϕ must define a bijection between G/H and Orb(Φ0).

We summarize the critical results:

1. The action of g on Φ is not unique up to compositions by h ∈ H since Φ
g→ Φ′

gh← Φ.

2. Because there is an isomorphism between the elements of G/H and the elements Φ ∈ V , we can

associate with each transformation of the Goldstone fields a representative element of the coset space.

3. An action built from the group elements will remain spontaneously broken so long as the group

elements transform per the group action ϕ(g, ϕ(g′,Φ0)) = ϕ(gg′,Φ0) = ϕ(gg′h,Φ0).

4. Specifically in the case of a Lie algebra, we can write f = exp{iφata} ∈ G so that the fields transform

nonlinearly per f
g→ gf = f ′h where h ∈ H .

Implications for QCD

Now we apply these results to the Goldstone bosons of QCD, i.e. the pions. Let (L,R) ∈ SU(N)L ×

SU(N)R and (V, V ) ∈ SU(N)V (recall that SU(N)V is the realization SU(N)L = SU(N)R, hence the

tuple). Given g = (L,R), g′ = (L′, R′) ∈ G, we can chain these transformations together in the following

manner

g′g = (L′, R′)(L,R) = (L′L,R′R) . (3.55)

But the conclusion of the previous section is that a transformation of the fields by g is the same as a

transformation of the fields by gh ∈ gH .
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g′gh =

g′︷ ︸︸ ︷
(L′, R′)

g︷ ︸︸ ︷
(L,R)

h︷ ︸︸ ︷
(L†, L†)(L′†, L′†) (3.56)

= (L′, R′)︸ ︷︷ ︸
g′

(1, RL†)︸ ︷︷ ︸
g̃

(L′†, L′†)︸ ︷︷ ︸
h̃

= (1, R′RL†L′†) (3.57)

That is, the action of g → g′g on the Goldstone fields is equivalent to the action of g → g′g̃h̃. This motivates

the following transformation law (we swap the primes).

(1, U)→ (1, RUL†) (3.58)

For shorthand we have written U = R′L′†, which could be any element of SU(N).

When written in this manner, it is manifestly clear that g̃ is parameterized by N2 − 1 real numbers—

exactly the number of Goldstone fields. Moreover, we know how to construct U by exponentiating some

generators of the Lie algebra su(N) for some parameters αa, which again is parameterized by N2 − 1 real

numbers. This procedure yields the following exponential representation

U = e2iαaTa/F . (3.59)

In the case of N = 2, we replace the parameters αa with the pion fields πa.

2αaT
a SU(2)

= πaτ
a =

 π3 π1 − iπ2

π1 + iπ2 −π3

 =

 π0
√

2π+

√
2π− −π0

 (3.60)

(The constant F a dimensionful quantity needed to keep the exponent dimensionless.) In the case of N = 3,

we would include the kaons and η meson. (The cases for N > 3 are not physically relevant, as these are not

good approximate symmetries.) Notice that the transformation of the pion fields is a nonlinear realization of

chiral symmetry.

The chiral Lagrangian

Now we use this matrix to construct terms in the chiral Lagrangian. First, we promote U from being a

constant matrix to a matrix that depends on x—clearly this is necessary if U is going to describe our pions
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fields. Using the cyclic property of the trace, it is evident that terms like

Tr
{

(UU †)n
}
→ Tr

{
(RUL†LU †R†)n

}
= Tr

{
(UU †)n

}
(3.61)

are invariant under chiral transformations. However, these particular terms won’t appear in the chiral

Lagrangian: since U is unitary, these are constant terms.

Instead, we will construct terms from derivatives of U . We note that

∂µU → ∂µU
′ = ∂µ(RUL†) = R∂µUL

† (3.62)

because these are global transformations. This gives us the candidates for the leading order (LO) contributions

to the chiral perturbation theory Lagrangian,

Tr
{
∂µU∂

µU †
}

∂µ Tr
{
∂µUU

†
}

Tr
{
∂2UU †

}
. (3.63)

However, these terms either vanish or are equivalent up to a total derivative.

Tr
{
∂µUU

†
}

= 0 (3.64)

∂µ Tr
{
∂µUU

†
}

= Tr
{
∂2UU †

}
+ Tr

{
∂µU∂

µU †
}

(3.65)

Therefore the first term is given by

L(2) ⊃ F 2

4
Tr
{
∂µU∂

µU †
}

(3.66)

where the superscript in L(2) reminds us of the number of derivatives of U . Here we have included a factor

of F 2/4 to correct the mass dimension and normalize the kinetic term. The parameter F is again related to

the pion decay constant; although we won’t show that here, this fact shouldn’t be too surprising since we

constructed the linear-σ model as a prototype for chiral perturbation theory. We can verify the normalization
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and mass dimension by defining φ = 2αaT
a and expanding the term. 7

L(2) ⊃ F 2

4
Tr

{
∂µ

[
1 +

iφ

F
+

1

2

(
iφ

F

)2

+ · · ·
]
∂µ

[
1− iφ

F
+

1

2

(−iφ
F

)2

+ · · ·
]}

(3.67)

=
F 2

4
Tr

{
1

F 2
∂µφ∂

µφ+
1

F 3
[∂µφφ+ φ∂µφ, ∂

µφ]− 1

4F 4
(∂µφφ+ φ∂µφ)2

}
=

1

2
(∂µαa)

2 +
1

6F 2

(
αaα

a∂µαb∂
µαb − αaαb∂µαa∂µαb

)
+ · · ·

The expansion begins with a kinetic term for the Goldstone fields as expected, while the term with an odd

mixture of φ and its derivatives drops out.

While Eq. (3.66) contributes to the chiral Lagrangian, it is only the lowest order term, as it contains

the fewest derivatives of the Goldstone fields and, more generally, the lowest dimension operators when

expanded. Indeed, there are infinitely many terms we could construct by taking the traces of products of U

and its derivatives which respect the group symmetry; we expect to be able to sort these terms by some power-

counting scheme such that Lχ = L(2) + L(4) + · · · . For example, a term like (Tr ∂µU∂
µU)2/F 2 ⊂ L(4) is

not redundant but rather competes with L(2) at the next order in the expansion given in Eq. (3.67).

In chiral perturbation theory, we expand in powers of p/Λχ, where p is the Goldstone boson momentum

and Λχ ≈ 4πF ∼ 1 GeV is the chiral symmetry scale (the appearance of F is obvious; the geometric factor of

4π emerges when evaluating loop integrals). When we later include the explicit breaking of chiral symmetry

by the mass terms, we include the Goldstone masses in our power-counting such that p/Λχ ∼ m/Λχ.

Including a mass term

Recall that chiral symmetry is explicitly broken by the mass of the quarks in the full theory,

LQCD ⊃
∑
f

mf

(
qf,Lqf,R + qf,Rqf,L

)
. (3.68)

7We employ the following SU(N ) identities:

Tr {T a} = 0 , Tr
{
T aT b

}
= δab/2 , Tr

{
T aT aT bT b

}
= δab , T aT bT a = − 1

2N
T a .
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We could add a term like m2F 2 Tr(U † + U) ≈ 16 − 2m2α2
a to provide a mass m for each of the

pseudo-Goldstone bosons. However, we would also like to have the flexibility to allow the pseudo-Goldstone

bosons to have different masses.

A useful trick is to promote the mass matrixM = diag(m1, · · · ,mN ) to a spurion field which transforms

like U , i.e. M → RML†. This procedure makes it easy to construct terms that appear invariant under the

group symmetry, but which are nevertheless violated since the spurions are not real. This gives us the lowest

mass term in the chiral Lagrangian and, with it, the full expression for L(2).

L(2) =
F 2

4
Tr
{
∂µU∂

µU †
}

+
F 2B

2
Tr
{
MU † + UM †

}
(3.69)

Notice that we have included a new parameter in our effective field theory, B.

Let us now specialize to the case of SU(2) so that M = diag(mu,md) and expand the explicit chiral

symmetry breaking term.

L(2) ⊃ F 2B

2
Tr
{
MU † + UM †

}
(3.70)

=
F 2B

2
Tr

{
M

(
1− iφ

F
− φ2

2F 2
+ · · ·

)
+

(
1 +

iφ

F
− φ2

2F 2
+ · · ·

)
M †
}

SU(2)
= F 2B (mu +md)−

B

2
(mu +md)(π

2
0 + 2π+π−) + · · ·

We can drop the constant term. Since mu ≈ md (and exactly so in the isospin limit), we denote m̂ =

(mu +md)/2. Thus we conclude

m2
π ≈ 2Bm̂ . (3.71)

Notably, the pion mass dependence on the quark masses is not linear. If we specialize to SU(3), we find that

for the other Goldstone bosons

m2
K ≈ B(m̂+ms) m2

η ≈
2

3
B(m̂+ 2ms) . (3.72)

(The expression for the pion is unchanged.) This allows us to relate the mass of the Goldstone bosons to each

other in the following manner,

4m2
K ≈ 3m2

η +m2
π , (3.73)
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or alternatively, relate the ratio of the quark masses to the masses of the Goldstone bosons,

m̂

ms
≈ m2

π

2m2
K −m2

π

≈ 1

26
(3.74)

Collectively these equation are known as the Gell-Mann–Oakes–Renner (GMOR) relations [41]. 8

Extending chiral perturbation theory to baryons

The spectrum of QCD contains more than just pions, kaons, and the η—there are also baryons and

(non-pseudo-Goldstone) mesons, which are generally referred to as matter fields. The extension of chiral

perturbation theory to baryons was first worked out in [42, 43]. The result—heavy baryon chiral perturbation

theory—separates the matter fields into “light” and “heavy” components such that the heavy components can

be integrated out and the light components become massless in the chiral limit [44].

As an example, we quote the result for SU(2) heavy baryon χPT where the matter fields are just the

nucleons and are packaged as an isodoublet ψN = (p, n)T [24, 45]. After the “light” and “heavy” fields have

been separated out, the resulting Lagrangian is

L(1)
πN = ψN

(
iγµ∂µ −M +

gA
2
γµγ5uµ

)
ψN (3.75)

with covariant derivative Dµ = ∂µ + Γµ and Γµ the chiral connection. To preserve the chiral symmetry, we

require the fields/operators transform like

ψN → KψN

DµψN → KDµψN (3.76)

uµ → KuµK
†

where K =
√
RUL†R

√
U and U = uµu

µ is the matrix field previously introduced when deriving the

(meson) chiral Lagrangian.

8Technically the GMOR relations include one more relation that relates the quark condensate to B. The easiest way
to see this is by not dropping the constant term in Eq. (3.70). It turns out that the fields are minimized when φ = 0,
so 〈Hχ〉 = F 2Bm̂ (see [24], e.g.). But we also know that m̂(uu+ dd) ⊂ HQCD. Taking the derivative of both with
respect to m̂ and then equating their vacuum expectation values, we find that F 2B = 〈uu+ dd〉 (the light quark
condensate).
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Similar to how L(2) is the just the lowest order meson contribution to the chiral Lagrangian, this is just

the lowest order nucleon contribution to the chiral Lagrangian. We note that there are two new LECs—M ,

the nucleon mass in the chiral limit, and gA, the axial charge, which can be shown to be gA ≈ gπNFπ/MN

(the Goldberger-Treiman relation [46]).
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Scale Setting

Quantities generated on the lattice are dimensionless; however, many observables that we’re interested

in studying are not. To convert our dimensionless observables generated on the lattice into dimensionful

quantities, we must introduce a scale. This process is known as scale setting.

The work described in this section resulted in the following publication.

N. Miller et al., Phys. Rev. D 103, 054511 (2021), arXiv:2011.12166 [hep-lat].

Measuring dimensionful observables on the lattice

As motivation for scale setting, let us review how to extract the mass of a baryon from the lattice. In

Chapter 1, we saw how to calculate the correlator of two observables using the Euclidean path integral.

〈O2(t)O1(0)〉 =
1

Z0

∫
D[q, q]D[U ] e−SF [q,q,U ]−SG[U ]O2[q(t), q(t), U(t)]O1[q(0), q(0), U(0)] (4.1)

This (Euclidean) path integral is sampled using Monte-Carlo to determine the two-point function on the

lattice. However, there is another way one might defined the correlation function. As operators (rather than

functionals), the correlation function is defined as

〈O2(t)O1(0)〉 = lim
T→∞

1

ZT
tr
{
e−(T−t)ĤÔ2e

−tĤÔ1

}
(4.2)

where ZT = tr
[
e−TĤ

]
. From this definition, we see that by introducing a complete set of energy eigenstates,

we can rewrite this correlation function in terms of its energy spectrum.

〈O2(t)O1(0)〉 =
∑
m,n

〈m|e−(T−t)ĤÔ2|n〉 〈n|e−tĤÔ1|m〉 (4.3)

≈
∑
n

〈0|Ô2|n〉 〈n|Ô1|0〉 e−tEn as T →∞ (4.4)
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The above formula is quite general, but it doesn’t tell us how to calculate the mass of some particular

baryon. To do that, we replace Ô1, Ô2 with operators that create a baryon from the vacuum at t = 0, which is

then destroyed at t = t.

〈O2(t)O1(0)〉 → 〈Ω|B(t)B†(0)|Ω〉 (4.5)

Here Ω is the QCD vacuum and B† is an operator that creates an excitation with the quantum numbers of the

specific baryon we’re interested in studying.

To summarize, we can estimate the mass of a baryon with

〈Ω|B(t = ant)B
†(0)|Ω〉 ≈

∑
n

Ane
−(nt)(aEn) . (4.6)

The expression on the left-hand side is simulated on the lattice via (4.1) for different values of t; the parameters

An, aEn on the right-hand side are determined by an n-state fit. Notice that we have substituted t = ant

since the separations in time, like the separations in space, are discretized. In fact, we do not even need

to know what the times are: if Lt is the “length” of the lattice in the t-direction, then we only require

nt ∈ {0, 1, . . . , Lt/a}. The parameters we extract from this fit are therefore purely dimensionless.

Most lattices are simulated with quark masses tuned away from their physical (experimental) values; we

therefore expect the baryon mass to differ from the experimental value also. If we know the lattice spacing,

we can convert the dimensionless parameter from the two-point function fit into a dimensionful parameter.

Reintroducing factors of c and ~ temporarily, we must calculate

E
phys
0 =

~c
a

(aE0)latt . (4.7)

But here’s the snag: we generally do not know the lattice spacing a priori.

Lattice spacing dependence of the coupling

Recall that QCD has Nf + 1 degrees of freedom: one per each fermion flavor (up, down, strange, charm,

bottom, and top) plus the gauge coupling g. On the lattice, one usually simulates less than the full Nf = 6

theory, as the heavier quarks play a negligible roll in the low-energy regime. In this work, we simulate

Nf = 2 + 1 + 1 quarks (here the 2 denotes that the up and down quarks are degenerate, i.e. we take the

isospin limit). Thus we have 3+1 parameters we must tune.
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To set the quark masses, we can tune the masses until the ratio of the masses of hadrons with different

quark content agree with their physical values, e.g. by tuning the ratios mπ/Mp, mK/Mp, and mDs/mp

until they agree with the PDG (see the next section).

For the gauge coupling, we realize that even in quark-less QCD (i.e., gluons only) we must still determine

the running coupling constant which changes according to the renormalization scale through a process

known as dimensional transmutation. Since the only dimensionful quantity available is the lattice spacing,

determining the lattice spacing must be equivalent to determining g.

Physical versus theory scales

The most obvious candidates for scale setting are observables known precisely from experiment, e.g.

the nucleon mass. Scale setting observables which depend on comparison with experiment are known as

physical scales. Ideally a scale setting observable should be precise and easy to generate on the lattice, yet

also have small systematics and depend only weakly on the quark mass [47] (a weak quark mass dependence

minimizes errors from extrapolation or quark mass mistuning). However, physical scales tend to lack one of

those desirable properties, so they are not ideal for scale setting.

To rectify this deficiency, lattice QCD practitioners have invented theory scales. Unlike physical scales,

theory scales are impractical—if not outright impossible—to measure with experiment alone. Nevertheless,

they can easily be measured on the lattice. We give an example of a physical scale and a theory scale below.

A physical scale: scale setting with the proton

As an example of scale setting with a physical scale, let us consider scale setting with the proton loosely

following the procedure described in [48]. We assume that we have already extracted the pion, kaon, and

proton masses from their associated two-point functions on multiple ensembles, spanning multiple quark

masses but only at a single lattice spacing. For illustration, suppose we use the following Taylor ansätze in
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the quark masses (in general, more sophisticated expressions can be derived using chiral perturbation theory).

amπ = c(0)
π +

∑
n,f

c(n,f)
π amqf

amK = c
(0)
K +

∑
n,f

c
(n,f)
K amqf (4.8)

aMp = c(0)
p +

∑
n,f

c(n,f)
p amqf

Finally, let us assume that we’re working in the isospin limit (u = d) and that the contribution from the charm

quark is negligible such that f ∈ {u, s} in the sum above.

To determine the lattice spacing, we must first fit the above expressions to determine the low energy

constants c(n,f)
{π,K,p}. We would like to know which values of mqf cause the mass expressions to match the

experimental values; we achieve this by solving for mq∗f
such that

amπ

aMp

∣∣∣∣
mq∗

f

=
m

exp
π

M
exp
p

and
amK

aMp

∣∣∣∣
mq∗

f

=
m

exp
K

M
exp
p

. (4.9)

Finally the lattice spacing a is found by extrapolating aMp to “physical” quark masses and comparing

against the experimental value.

a =
aMfit

p

M
exp
p

∣∣∣∣∣
mq∗

f

(4.10)

We then repeat this procedure for each lattice spacing.

A theory scale: scale setting with the Sommer parameter r0

As hinted at before regarding physical scales, there is a flaw with using the proton for scale setting: the

proton correlator has a nasty signal-to-noise problem. To understand why, consider the variance of the proton

correlator

Var [C(t)] = E
[
C(t)C†(t)

]
︸ ︷︷ ︸
∼〈(uud)(uud)〉

−E [C(t)]2 . (4.11)

The first term tells us that the variance is sensitive to the particles formed from 3 quarks and 3 anti-quarks. It

is possible for a proton-antiproton pair to form, but this is rather heavy (∼ 2Mp). A much lighter (and hence

more energetically favorable) configuration is 3 pions, so we expect 〈|C(t)|2〉 ∼ e−3mπt. This term will be
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much larger than the second term in Eq. (4.11), so the signal-to-noise ratio is approximately given by

E [C(t)]√
Var [C(t)]

∼ e−(Mp− 3
2
mπ)t (4.12)

We expect the signal-to-noise ratio to shrink with lattice time. In fact, this is an issue with all baryons,

albeit to varying degrees; mesons, however, do not suffer so, as the lightest combinations of quarks in the first

term of Eq. (4.11) will still be mesonic.

As an alternative to scale setting using baryon masses, Sommer proposed a scale setting technique using

the static QCD potential [49]. Compared to scale setting with a baryon, there is no signal-to-noise problem.

We note that the static quark potential is given by [8]

V (r) = A+
B

r
+ σr (4.13)

where the B/r term corresponds to a Coulomb-like potential and the σr term corresponds to the string

tension/confinement (for reference, σ ≈ 900 MeV/fm; the constant term A is included for completeness, but

it is irrelevant for our purposes). This effects a force between two static quarks,

F (r) =
d

dr
V (r) = −B

r2
+ σ . (4.14)

(Convention omits the negative sign in the derivative.) We would like to use this potential to set the scale;

however, we would also like to avoid an extrapolation in r. To that end, we instead consider

r2
0F (r0) = c . (4.15)

with a fixed value of r = rc. When mq � ΛQCD, we can estimate the effect of this potential by using the

(nonrelativistic) Schrödinger equation [50], which can then be compared to experimental measurements of cc

and bb states. Sommer suggested setting c = 1.65, which would correspond to r0 ≈ 0.49 fm. Solving for r0,

we find that

r0 =

√
c+B

σ
. (4.16)
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Dividing both sides by the lattice spacing a and rearranging the equation, we have the following relation

a = r0

√
σa2

c+B
. (4.17)

Notice that B and σa2 are both dimensionless quantities, suggesting that they might be accessible on the

lattice. Let us now focus on determining these parameters.

We begin by noting (see Chapter 3 of [8] for details) that the static quark potential is related to the

expectation value of the Wilson loop WL, a generalization of the plaquette (Eq. (1.38)) to more general paths.

〈WL〉 ≈ Ce−tV (r) = Ce−(nt)(aV (an)) (4.18)

Here we have substituted r, t for the lattice values: r = an and t = ant. Suffice it to say that the expression

on the left-hand side of this equation can be readily calculated on the lattice. By varying nt (but fixing n), we

can fit this equation to determine the parameters C and aV (r = an). We then repeat this process varying n

such that we extract values of the potential aV (r = an) for n ∈ {0, 1, . . . , L/a}.

Finally we fit aV (an) as a function of n to determine B and σa2.

aV (an) = Aa+
B

n
+ σa2n (4.19)

These parameters can then be substituted into Eq. (4.17), thus determining a.

Scale setting with the gradient flow

In our work, we use a theory scale derived from gradient flow instead of the static potential. In addition

to being cheap to compute and highly precise, the gradient flow-derived scales, in contrast to the potential-

derived scales, have an expression in chiral perturbation theory. But first we should describe what gradient

flow actually is.

We define a gradient flow field Bµ which diffuses according to [51]

Ḃµ = DνGνµ Bµ|t=0 = Aµ (4.20)

Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ] Dµ = ∂µ + [Bµ, · ] (4.21)
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where Aµ is the QCD gauge field, Bµ describes the flow of Aµ, and Ḃµ denotes the derivative of Bµ with

respect to the flow time t. Critically, the flow time has mass dimension -2, making it possible for us to use it

to set the scale. Observe that these flow equations must drive the gauge fields towards stationary points of the

action.

Now we define E = 1
4G

a
µνG

µν
a , which reduces to the gluonic energy density in the limit t→ 0. So long

as the flow time satisfies a� √8t0 � aL, we can approximate the expectation value as

〈E〉 =
3

4πt2
αS(Q2)

(
1 + k1αS(Q2) + · · ·

)
(4.22)

where αS(Q2) is the running coupling. The left-hand side is something we can calculate on the lattice for

relatively cheap since it doesn’t depend on the fermion action.

If we multiply this quantity by the flow time squared t2, we see that quantity is proportional to the

coupling at leading-order. This is the motivation for defining the gradient flow scales t0 and w0. Empirically

this quantity is observed to be nearly constant around t2 〈E〉 = 0.3, so we define t0 to be the flow time at

which this condition is satisfied.

t2 〈E(t)〉
∣∣∣
t=t0,orig

= 0.3 (4.23)

Worig = t
d

dt

(
t2 〈E(t)〉

) ∣∣∣
t=w2

0,orig

= 0.3 (4.24)

Here we have also included a related quantity, w0, which ameliorates artifacts introduced by the transition of

〈E〉 from a 1/t2 dependence to a 1/t dependence at larger flow times (including times near t0) [52]. These

equations are how the gradient scales were originally defined (hence the subscript “orig”).

Additionally, Fodor et al. [53] proposed the following “improved” definitions (still at tree level) which

remove some of the lattice spacing dependence of these scales.

t2 〈E(t)〉
1 +

∑
nC2n

a2n

tn

∣∣∣∣∣
t=t0,imp

= 0.3 (4.25)

t
d

dt

(
t2 〈E(t)〉

1 +
∑

nC2n
a2n

tn

)∣∣∣∣∣
t=w2

0,imp

= 0.3 (4.26)

51



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

t/a2
15

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
or

ig

w0,orig/a = 1.143209(61)

a15m135XL

Figure 4.1: Measuring w0/a on one of the ensembles. Notice that the derivative is practically constant near
the point at which Worig = 0.3 Figure from [54].

Here the C2n coefficients are just some rational numbers that were determined in [53].

Finally, because 〈E〉 is just the kinetic gauge term, it is automatically invariant under chiral transforma-

tions. This implies the existence of a chiral expansion for 〈E〉, which in turn yields a chiral expansion for t0

and w0.

Project goals

Ultimately we would like to calculate the gradient flow scales w0 and t0, which will allow us to set the

scale of our lattice. We accomplish this task by generating the gradient flow scales on each lattice ensemble

(each of which is tuned for a different light quark/pion mass and have different lattice spacing sizes), then

extrapolate from those lattice ensembles down to the physical point. 1

However, we cannot extrapolate directly the gradient flow scales—these are dimensionful quantities,

after all. Instead we need to construct dimensionless quantities from the gradient flow scales and some

dimensionful observable. For example, consider w0, which has the following N2LO χPT expression [55]. 2

w0 = w0,ch
(
1 + c1ε

2
π + c2ε

4
π + c3ε

4
π log ε2π

)
(4.27)

1See Appendix B for the ensemble data as well as a discussion of our lattice action.
2Throughout this thesis, we will assume the renormalization scale in loop integrals (logarithms) is chosen such that
µ = Λχ = 4πFπ unless otherwise noted. This choice has limited impact on our extrapolations other than shuffling the
values of the LECs. See Appendix E.
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(Here we have defined the expansion parameter επ = mπ/Λχ, where Λχ = 4πFπ is the chiral cutoff. The

parameters ci and w0,ch are low-energy constants, with w0,ch in particular being the value of w0 in the chiral

limit, i.e. mq = 0.) On the lattice, we do not generate w0; instead we generate the dimensionless quantity

w0/a. If we divide both sides by the lattice spacing, we might think we have something more amenable to a

fit.
w0

a
=
w0,ch

a

(
1 + c1ε

2
π + c2ε

4
π + c3ε

4
π log ε2π

)
(4.28)

There are a couple problems with this approach, however. First there is the obvious question: what does

it even mean to extrapolate this quantity to the physical point, which includes the limit a = 0? Since w0 is

finite, the quantity on the right-hand side will blow up. The proposal to extrapolate w0/a to the continuum

limit is a non-starter.

Second, we have changed the low-energy constant (LEC) w0,ch to w0,ch/a. Notably, this LEC now

also depends on the lattice spacing. Thus Eq. (4.28) is only useful if we’re fitting ensembles that have

(approximately) the same lattice spacing.

However, none of these comments are meant to imply that Eq. (4.28) is useless. On the contrary, we

can use Eq. (4.28) to determine the lattice spacings if we’ve already determined w0 by some other method

through the relation

a =
w0

(w0/a)fit

∣∣∣∣∣
physical point

. (4.29)

But first we must determine w0. Notice that if we multiply w0 by an observable with mass dimension

1—the Ω baryon mass, for example—then we will have something dimensionless. But like w0, we do not

directly generate MΩ on a lattice but rather aMΩ; however, we see that the factors of a will cancel. Therefore

if we instead extrapolate the quantity (w0/a)(aMΩ) = w0MΩ to the physical point, we can determine w0 by

calculating

w0 =
(w0MΩ)fit

M
exp
Ω

∣∣∣∣∣
physical point

. (4.30)

That is, we use MΩ as the physical scale when calculating the theory scale w0.

The example of using MΩ is not arbitrary—that is, in fact, the physical scale we use in this project. One

might wonder why we would use a baryonic quantity, which admittedly suffers from an aforementioned

signal-to-noise issue, as opposed to some mesonic quantity like Fπ. In fact, some collaborations do use Fπ

as the physical scale when calculating the gradient flow scales. However, the Ω baryon, being composed of
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Scheme a15/fm a12/fm a09/fm a06/fm
t0,orig/a

2 0.1284(10) 0.10788(83) 0.08196(64) 0.05564(44)
t0,imp/a

2 0.1428(10) 0.11735(87) 0.08632(65) 0.05693(44)
w0,orig/a 0.1492(10) 0.12126(87) 0.08789(71) 0.05717(51)
w0,imp/a 0.1505(10) 0.12066(88) 0.08730(70) 0.05691(51)

Table 4.1: Determinations of the lattice spacing for four different scale setting schemes using Eq. (4.29).
Notice that the lattice spacing is scheme dependent. However, the result of an extrapolation to the physical
(continuum) point is not scheme dependent; different schemes simply shuffle the LECs around.

three valence s quarks, has weak light quark dependence unlike Fπ. Moreover, when calculating the variance

of the correlation function per Eq. (4.11), we form pairs of kaons instead of pions. Thus the signal-to-noise

falls as exp[−(MΩ − 3mK/2)t], which is slower than other baryons.

Extrapolating the gradient flow scales to the physical point

We perform fits of w0mΩ and
√
t0mΩ in order to determine the gradient flow scales w0 and t0, which

we can then use for scale setting. The chiral expansion for
√
t0 is identical to that of w0 given in Eq. 4.28,

other than the LECs being different. For convenience, let us separate out the observable into two pieces,

(w0MΩ)fit = (w0MΩ)chiral + (w0MΩ)disc , (4.31)

and analyze them separately.

General remarks on the procedure for extrapolating observables are available in Appendix C.

Chiral models

The chiral expansion for MΩ was worked out to N3LO in [56].

MΩ =M0 + α2ε
2
πΛχ +

(
α4 + β4 log ε2π

)
ε4πΛχ (4.32)

+
(
α6 + β4 log ε2π + γ6

(
log ε2π

)2)
ε6πΛχ
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|n| 1
√

2
√

3
√

4
√

5
√

6
√

7
√

8
√

9
√

10

cn 6 12 8 6 24 24 0 12 30 24

Table 4.2: Finite volume weight factors for the first few finite volume modes.

We multiply this expression with that for the gradient flow scales to yield the χPT expression for the combined

quantity.

(w0MΩ)chiral =w0,chM0 (LO) (4.33)

+ clε
2
π + csε

2
s (NLO)

+
[
cll + cll,g log(ε2π)

]
ε4π + clsε

2
πε

2
s + cssε

4
s (N2LO)

+
[
clll + clll,g log(επ) + clll,g2 log2(επ)

]
ε6π (N3LO)

+ cllsε
4
πε

2
s + clssε

2
πε

4
s + csssε

6
s

The strange quark dependence is parameterized by εs = (2m2
K −m2

π)/Λχ. We reiterate that the expression

for
√
t0MΩ is identical other than the LECs.

We consider two choices for Λχ when model averaging: either Λχ, as is typically chosen in χPT, or

Λχ = MΩ, taking inspiration from [57].

Discretization effects

The lattice spacing corrections are a simple Taylor Ansatz, as explained in Appendix C. There is some

ambiguity in the definition of the expansion parameter εa (e.g., εa = a/2w0 or εa = a/2
√
t0 ); however,

this choice impacts the final extrapolation at less than a fraction of a standard deviation, so we choose

εa = w0/2a.

The finite volume corrections require us to modify the logarithms (associated with loop integrals in χPT)

in the following manner [58, 59]. The single logarithms become

log ε2π → log ε2π + 4k1(mπL) (4.34)

where

k1(x) =
∑
|n|6=0

cn
K1 (x|n|)
x|n| (4.35)
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and K1 is a modified Bessel function of the second kind and the cn are given in Table 4.2. Meanwhile the

two-loop integrals, manifest in the (log ξ)2 terms, are modified slightly differently. These become

[
log ξl

]2
→
[

log ξl + 4k1(mπL)
]2
−
[

log ξl

]2
(4.36)

≈ 8k1(mπL) log ξl

with the approximation being valid for our range of mπL.

Additionally, there is a radiative correction αsa2 for our sea quark action that scales as log a [60].

Results & conclusions

We summarize the choice of models we average over in the following table; the impact of these choices

is demonstrated in Fig. 4.4. (The model averaging procedure is described in Appendix C.)

×2 : Taylor or χPT

×2 : Expand to N2LO or N3LO

×2 : Include/exclude finite volume corrections

×2 : Include/exclude radiative corrections αsa2

×2 : Choice of Λχ ∈ {4πFπ,MΩ}

32 : Total choices

Overall, we find that our model average is largely insensitive to these choices. We note that it is

unnecessary to include either the finest lattice spacing ensemble (a06m310L) or the smaller-than-physical

strange quark mass ensemble (a12m220ms) in order to achieve the precision reported in this work; however,

excluding either ensemble does shift the central value of the model average, albeit less than 1σ.

We find that our model average is insensitive to the choice of χPT- or Taylor-type fit as well as the order

at which the expansion in truncated. Nevertheless, the choice for Λχ = 4πFπ (the typical χPT choice) is

favored by a Bayes factor of roughly 150.

Below we report the values for the extrapolations to the physical point using εa = a/2w0. The full

paper [54] lists the results for an alternate choice for the definition of εa, but the difference is barely perceptible
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so we omit it here.

√
t0MΩ = 1.2051(82)s(15)χ(46)a(00)V (21)phys(61)M

= 1.205(12) ,
√
t0

fm
= 0.1422(09)s(02)χ(05)a(00)V (02)phys(07)M

= 0.1422(14) ,

w0MΩ = 1.4483(82)s(15)χ(45)a(00)V (26)phys(18)M

= 1.4483(97)

w0

fm
= 0.1709(10)s(02)χ(05)a(00)V (03)phys(02)M

= 0.1709(11) .

The uncertainties have been split by type: statistics (s), chiral model (χ), lattice spacing (a), finite volume

(V ), physical point input (phys), and model uncertainty (M ). For w0, the largest contribution to our error

budget comes from statistics, suggesting a clear path forward for improving our result. In contrast, for t0

the model selection uncertainty is comparable to the statistical uncertainty, with the former source of error

primarily arising from different ways of modeling the discretization effects.

In future work we will likely need to incorporate the effects of isospin breaking (QCD + QED) if we

wish to significantly reduce our uncertainty budget (for example, as was performed in [61]). As scale setting

is necessary for converting any dimensionful observable calculated on the lattice into physical units, it is

imperative that the uncertainty introduced by scale setting be minimized to the greatest extent possible.

For now, however, we expect the contribution from scale setting to be subdominant when calculating such

observables.
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Figure 4.2: Results of interpolating (or in the case of w0/a06, extrapolating) w0/a to the physical pion mass
using Eq. 4.28. The square data have been “shifted” such that the dependence is only on ε2π = l2F ; the black
data are the original data (see Appendix C). Multiplying w0/(w0/a15) yields the lattice spacing on a given
ensemble (see Table 4.1). Figure from [54].
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Figure 4.3: Extrapolations ofw0MΩ and
√
t0MΩ using the tree-level and improved definitions of the gradient

flow scales. Here lF = επ. Notably, we see that
√
t0MΩ approaches the continuum limit in drastically

different manners depending on which version of t0 is used. However, the continuum values agree to within
a fraction of a sigma, demonstrating that observables should agree in the continuum limit independent of
scheme even if their values on a particular ensemble do not. Figure from [54].
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Ratio of Pseudoscalar Decay Constants, FK/Fπ

The ratio FK/Fπ is known as a gold-plated quantity in lattice QCD, being something that’s easily

calculable on the lattice and thus useful as a benchmark in comparing the fermion actions used by different

collaborations. Moreover, precisely knowing the ratio allows one to determine the ratio of the Cabibbo-

Kobayashi-Maskawa matrix elements |Vus| and |Vud|, as we will explain.

The work described in this chapter culminated in the following publication

N. Miller et al., Phys. Rev. D 102, 034507 (2020), arXiv:2005.04795 [hep-lat].

Connection to the Cabibbo-Kobayashi-Maskawa matrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix characterizes the extent to which the quarks eigenstates

of the strong interaction can be thought of as a quark eigenstates of the weak interaction. In a universe where

the quark eigenstates of the weak and strong interaction are the same, the CKM matrix is the identity; we are

evidently not in that universe (quarks can change flavors through the weak interaction), and indeed the CKM

matrix reflects that deviation from unity. Per the PDG [70] (and slightly overestimating some uncertainties to

simplify the notation),


|Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|

|Vtd| |Vts| |Vtb|

 =


0.97401(11) 0.22650(48) 0.00361(11)

0.22636(48) 0.97320(11) 0.04053(83)

0.00854(23) 0.03978(82) 0.99917(04)

 . (5.1)

Since the standard model requires the CKM matrix to be unitary, we can derive constraints on the rows

and columns of this matrix. We will concentrate in particular on the top-row unitarity condition,

|Vud|2 + |Vus|2 + |Vub|2 = 1 . (5.2)

We make the following observations regarding these matrix elements:
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Figure 5.1: A kaon box diagram. Here q is an up-type quark (i.e., q ∈ {u, c, t}). Because the quark eigenstates
are different in the strong and weak interactions, a K0 can spontaneously change into a K0. Consequently,
kaon decays do not conserve CP.

1. Of the three matrix elements in this relation, |Vud| is the most precisely known. Here |Vud| is extracted

using superallowed beta decays, in which one calculates a comparative half-life for some nucleus,

which can then be averaged with the comparative half-lives from several different nuclei [71]; the

dominant uncertainty comes from the radiative and nuclear structure corrections as predicted by

theory [72].

2. Historically |Vus| was determined by assuming SU(3) flavor symmetry, which allowed one to estimate

the form factors by relating the decays of different baryons in the baryon octet [71]. However, as

SU(3) flavor symmetry is broken by ∼15%, this leads to a comparably poor estimate. These days

one determines |Vus| instead by using either leptonic (K`2) or semi-leptonic (K`3) kaon decays in

conjunction with a lattice estimate of the associated form factor(s) [73].

3. Finally, the last matrix element in this relation, |Vub|, is determined from semi-leptonic B decays;

however, it is largely irrelevant for top-row unitarity tests, as its central value is small enough to be

eclipsed by the uncertainty of the other two. Thus the top-row unitarity condition is primarily a test

between |Vud| and |Vus|.

In summary, |Vus| is essential for checking top-row unitarity. Additionally, in the Wolfenstein (λ,A, ρ, η)

parameterization of the CKM matrix [74], |Vus| = λ and thus affects all the other entries of the CKM matrix.

In this work, we determine |Vus| through the leptonic decayK → lνl by using the lattice and experimental

input. We begin with the charge-changing Lagrangian for the weak interaction [71],

LCC = −GF√
2
Vkmu

kγµ
(
1− γ5

)
dmlγµ

(
1− γ5

)
ν + h.c. (5.3)
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We can now write down the transition matrix element for a pseudoscalar—for example, the pion—decaying

into two leptons.

u µ+

d νµ

=
GF√

2
Vud 〈0|dγµγ5u|π(p)〉︸ ︷︷ ︸

i
√

2pµFπ

lγµ
(
1− γ5

)
νl (5.4)

Fermi’s golden rule allows us to relate the decay rates to the spin-averaged transition matrix element.

To wit, dΓ ∼ 〈|T |2〉 dφ, with φ a phase space factor. Consequently, we expect Γ(π → lνl) ∼ |Vud|2F 2
π . A

similar argument can be made for |Vus|.

Calculating FK/Fπ on the lattice

Marciano [75, 76] showed how to relate the ratio the decay rates to the ratio of the decay constants

exactly, which allows us to extract the ratio |Vus|2/|Vud|2.

Γ(K → l νl)

Γ(π → l νl)
=

(
FK
Fπ

)2 |Vus|2
|Vud|2

mK(1−m2
l /m

2
K)2

mπ(1−m2
l /m

2
π)2

[
1 +

α

π
(CK − Cπ)

]
(5.5)

The decay rates Γ and masses are well-determined from experiment. The last factor (in brackets) accounts for

radiative electroweak corrections, but it contributes little to the calculation due to the factor of α.

The pseudoscalar decay constants themselves are defined as follows,

〈0|dγµγ5u|π+(p)〉 = i
√

2pµFπ+ 〈0|sγµγ5u|K+(p)〉 = i
√

2pµFK+ . (5.6)

That is, they are related to the expectation value for the respective pseudoscalar particle to return to the (QCD)

vacuum, which occurs by the action of its antiparticle on the state. This particular combination of gamma

matrices ensures the antiparticle is a pseudoscalar also.

On the lattice, we can relate these decay constants to the correlation functions through the following

Ward identity [77].

Fq1q2 = Z(PS)
q1q2

mq1 +mq2 +m
(res)
q1 +m

(res)
q2

3
√
Eq1q2

(5.7)
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Here m(res)
q is the residual mass of quark q (a quantity particular to Möbius domain wall fermions, which

characterizes the breaking of chiral symmetry), Eq1q2 is the ground state energy of the meson (q1q2), and

ZPS
q1q2 is the wavefunction overlap. The latter two quantities are determined from correlator fits, whereas the

other quantities are known a priori. (Refer to Appendix D for a nuanced discussion of correlator fits.)

Extrapolation functions

The goal of this project is to determine the ratio FK/Fπ, which will allow us to estimate the ratio

|Vus|/|Vud|; doing so will require us to generate the quantity FK/Fπ on each lattice and then extrapolate the

observable to the physical point.

As in Chapter 4, we separate our fit function into a chiral piece and discretization piece.

(
FK
Fπ

)fit

=

(
FK
Fπ

)chiral

+

(
FK
Fπ

)disc

(5.8)

Chiral models

The SU(3) χPT expression for FK/Fπ to N2LO is [78]

(
FK
Fπ

)χPT-expanded

=1 +
5

8
ε2π log ε2π −

1

4
ε2K log ε2K −

3

8
ε2η log ε2η + 4(4π)2L5

(
ε2K − ε2π

)
(NLO)

+ ε4KFF

(
ε2π
ε2K

)
+ K̂r

1

(
log ε2π

)2
+ K̂r

2 log ε2π log ε2K (N2LO)

+ K̂r
3 log ε2π log ε2η + K̂r

4

(
log ε2K

)2
+ K̂r

5 log ε2K log ε2η + K̂r
6

(
log ε2η

)2
+ Ĉr1 log ε2π + Ĉr2 log ε2K + Ĉr3 log ε2η + Ĉr4 . (5.9)

where εp = mp/Λχ. Let us refer to this as the χPT-expanded expression for FK/Fπ. Clearly this chiral

expression is significantly more complicated than the chiral expression for w0MΩ (recall that one reason for

choosing w0 as a scale setting quantity was for its weak pion dependence). We will break down these terms

by order in the next few sections.

Compared to our chiral extrapolation of w0MΩ before, we have an additional constraint on FK/Fπ: in

the SU(3) flavor limit, we expect FK/Fπ = 1. Indeed, the expression above satisfies this condition, and it is

easily verified to NLO using the GMOR relation (Eq. 3.74).
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However, rather than use the expanded expression, we can instead calculate FK and Fπ individually,

then calculate the ratio (of course, the decay constants themselves are dimensionful quantities, but this is

irrelevant once we take the ratio). In this case, we instead use

(
FK
Fπ

)χPT-ratio

=
FχPT
K

FχPT
π

(5.10)

where to NLO [79]

FχPT
K = F0

[
1− 3

8
ε2π log ε2π −

3

4
ε2K log ε2K −

3

8
ε2η log ε2η + 4ε2π(4π)2L4 + 4ε2K(4π)2(L5 + 2L4)

]
,

(5.11)

FχPT
π = F0

[
1− ε2π log ε2π −

1

2
ε2K log ε2K + 4ε2π(4π)2(L4 + L5) + 8ε2K(4π)2L4

]
. (5.12)

Let us refer to this as the χPT-ratio expression for FK/Fπ.

We also attempted to fit FK/Fπ using mixed-action effective field theory [80], an extension of χPT to

the sea-quark sector. However, the weights were orders of magnitude worse for this class of fits and were

ultimately excluded from the analysis, so we omit a discussion of them here. Refer to the full paper for

details [81].

In this work we also consider the choices µ = Λχ ∈ 4π{Fπ, FK ,
√
FπFK} as different proxies for the

chiral cutoff/renormalization scale. Note that we use a sliding renormalization scale (e.g., using the value

of Fπ on an ensemble) and not a fixed renormalization scale (e.g., using the physical point value of Fπ).

Different choices (without counterterms) are expected to shift the LECs but not the final extrapolated value.

Corrections for these different choices are worked out in Appendix E.

Chiral models: NLO

Appearing in the NLO χPT expressions Eqs. (5.9), (5.11), and (5.12) are the Gasser-Leutwyler LECs L4

and L5. These LECs are the coefficients in the next leading term in the chiral Lagrangian, e.g.

L(4) ⊃ L5 Tr
[
∂µU∂

µU †
(
MU † + UM †

)]
. (5.13)
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Figure 5.2: Example extrapolation as a function of the light quark mass (left) and lattice spacing (right).
Figure from [81].

Even though we could model our expression for FK/Fπ as a Taylor expansion plus χPT-motivated log terms,

using the explicit χPT expression allows us to determine the Gasser-Leutwyler LECs, which can be reused

for other χPT calculations.

Comparing the χPT-expanded and χPT-ratio models, we observe that there is an advantage to the

expanded form: L4 is eliminated at NLO.

Finally, we note that although we typically prior our LECs when fitting as O(1) (that is, we assume our

effective field theory is “natural”), we note that the Gasser-Leutwyler coefficients have been measured to be

much smaller, roughly O(10−3).

Chiral models: N2LO

The N2LO corrections can be broadly classified into four categories: pure Taylor, single logs, double-logs,

and a “sunset” term, the last of which comes from evaluating a sunset integral.

δ

(
FK
Fπ

)χPT-expanded

N2LO
= δ

(
FK
Fπ

)Taylor

N2LO
+ δ

(
FK
Fπ

)log

N2LO
+ δ

(
FK
Fπ

)log2

N2LO
+ δ

(
FK
Fπ

)sunset

N2LO
(5.14)

The Taylor terms can be modeled in a straightforward fashion: one could simply write
∑

p αpε
2
p(ε

2
K−ε2π).

However, since the χPT-expanded expression is known to N2LO, we could instead rewrite the αp coefficients

in terms of the Gasser-Leutwyler coefficients; this is encapsulated in the term

δ

(
FK
Fπ

)Taylor

N2LO
= Ĉr4 . (5.15)
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In addition to the Gasser-Leutwyler constants, however, this term also includes the coefficients of L(6).

The single log dependence is captured by the remaining Ĉri .

δ

(
FK
Fπ

)log

N2LO
= Ĉr1 log ε2π + Ĉr2 log ε2K + Ĉr3 log ε2η (5.16)

Only the Gasser-Leutwyler LECs appear in these terms.

The double-log terms are entirely determined, with no LECs appearing inside K̂r
i .

δ

(
FK
Fπ

)log2

N2LO
=K̂r

1

(
log ε2π

)2
+ K̂r

2 log ε2π log ε2K + K̂r
3 log ε2π log ε2η (5.17)

+ K̂r
4

(
log ε2K

)2
+ K̂r

5 log ε2K log ε2η + K̂r
6

(
log ε2η

)2
The remaining term arises comes from the sunset integral.

δ

(
FK
Fπ

)sunset

N2LO
= ε4KFF

(
ε2π
ε2K

)
(5.18)

The analytic result is quite complicated but was worked out in [78]. In our extrapolation routine, we include

these terms using a Python wrapper for the software package CHIRON [82].

We can use N2LO chiral corrections for the ratio-type models also so long as we subtract off the N2LO

cross terms that come from Taylor expanding

FK
Fπ

=
1 + δFNLO

K

1 + δFNLO
π

. (5.19)

Thus

δ

(
FK
Fπ

)χPT-expanded

N2LO
= δ

(
FK
Fπ

)chiral

N2LO
+ δFNLO

π δFNLO
K −

(
FNLO
π

)2
. (5.20)

Chiral models: N3LO

Corrections at N3LO are pure Taylor counterterms (with the appropriate factor of ε2K − ε2π). Although

simple, we find that these terms are useful in obtaining a good quality fit.
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Discretization effects

The discretization corrections for FK/Fπ are nearly identical to those we included forw0MΩ in Chapter 4.

That is, for the finite volume corrections we again modify the logs as

log ε2π → log ε2π + 4k1(mπL) (5.21)

using the coefficients given in Table 4.2. We omit the N2LO finite volume corrections in which the double-

log terms are modified, as we find our fits are insensitive to these corrections when fitting this particular

observable.

The lattice spacing corrections are also modified to ensure that FK/Fπ → 1 in the SU(3) flavor limit.

We again require that the discretization terms include a factor of ε2K − ε2π, which consequently means that the

lowest-order lattice spacing corrections must enter at O(ε4). Similarly, if we choose to include the radiative

αs correction, it also contributes at O(ε4).

Results & conclusions

We include the following models in our model average. A representative model is shown in Fig. 5.2.

×3 : Choice of µ = Λχ ∈ 4π{Fπ, FK ,
√
FπFK}

×2 : Choice of χPT-expanded or χPT-ratio for chiral model

×2 : Include/exclude χPT corrections at N2LO

×2 : Include/exclude αs discretization correction

24 : Total choices

The impact of these differences is shown in Figs. 5.3 and 5.4. Notably, we find that simply using Taylor

counterterms at N2LO (but keeping the χPT-motivated terms at NLO) is strongly preferred over a full χPT

fit, suggesting our data is insufficient to discern the chiral logs. Further, as mentioned previously, results

from mixed-action χPT fared no better than regular χPT , with the most discernible difference being a

tanking of the Bayes factor. Fits using the canonical choice Λχ = 4πFπ contribute the most to the model

average, whereas those using Λχ = 4πFK (the largest deviation from the canonical choice) contribute the

least. Nevertheless, the difference on the extrapolation is less than 1σ.
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Figure 5.3: Model comparison. The left panel shows the result of the model average for given restrictions on
the models, while the right side shows the relative weight of the model. Only models that include the same
set of ensembles can be compared; thus the fits with gray triangles (denoting fits in which the finest lattice
spacing ensemble is excluded) should only be compared among themselves. We see that the mixed-action
EFT fits produce a similar result as our model average despite having negligibly small weight and being
excluded from the model average. The final model average is relatively insensitive to our choice of priors.
Figure from [81].

We report a final model-averaged result of

FK
Fπ

= 1.1964(32)s(12)χ(20)a(01)V (15)phys(12)M (5.22)

= 1.1964(44) .

separated into statistical (s), chiral (χ), lattice spacing (a), finite volume (V ), physical point input (phys), and

model selection (M) uncertainties.

69



1.17 1.18 1.19 1.20 1.21 1.22

FK/Fπ

0

10

20

30

40

50

60
P

D
F

s
fr

om
N

2L
O

ct
or

fu
ll

X
P

T
N2LO=ct (F 2

π )

N2LO=XPT (F 2
π )

1.17 1.18 1.19 1.20 1.21 1.22

FK/Fπ

0

1

2

3

4

P
D

F
s

fr
om

ra
ti

o
or

no
t

w/o ratio fit (F 2
π )

w/ ratio fit (F 2
π )

1.17 1.18 1.19 1.20 1.21 1.22

FK/Fπ

0

20

40

60

80

B
ay

es
M

od
el

A
vg

P
D

F

F 2 → F 2
π

F 2 → FπFK

F 2 → F 2
K

Figure 5.4: Histograms for some of the model averaging choices. Besides showing the relative weights,
these plots also demonstrate the distribution of values. Figure from [81].

Additionally, we also estimate the SU(2) isospin-breaking correction [83].

δSU(2) =
√

3εSU(2)

[
−4

3
(FK/Fπ − 1) +

4

3(4πF )2

(
m2
K −m2

π −m2
π log

m2
k

m2
π

)]
(5.23)

Here εSU(2) =
√

3/(4R), R = 35.7(2.6) per FLAG [73], the masses are the physical values, and FK/Fπ is

the extrapolated result. With δSU(2) in hand, we can compare our value of FK/Fπ determined on the lattice to

the corrected charged ratio F±K/F
±
π through

F±K
F±π

=
FK
Fπ

√
1 + δSU(2) . (5.24)

The corrected charge ratio F±K/F
±
π , as opposed to FK/Fπ, is the quantity compiled by FLAG. We find that

F±K
F±π

= 1.1942(44)(07)isospin (5.25)

= 1.1942(45) .
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Figure 5.5: Plot of |Vus|/|Vud| (red band). The blue band is the global average for |Vus| using lattice
determinations of f+(0) plus semi-leptonic kaon decays. The green band is the global average for |Vub| using
superallowed beta decays. The figure from [81] has been updated with more recent averages.

Next we check the top-row unitarity condition and determine the CKM matrix element |Vus|. From

Eq. (5.5), we have
|Vus|
|Vud|

F±K
F±π

= 0.2760(4) =⇒ |Vus|
|Vud|

= 0.2311(10) (5.26)

using global averages from the PDG [72] and our model-averaged result.

With our ratio |Vus|/|Vus|, we can either determine |Vus| (using the global averages from superallowed

beta decay) or |Vud| (using the other lattice determination of |Vus| from semi-leptonic kaon decays, K`3).

|Vus| = 0.2252(9) (w/ β) (5.27)

|Vud| = 0.9658(49) (w/ K`3) (5.28)

Although the |Vus| result from FK/Fπ is comparable to the result from f+(0) (see Fig. 5.5), the result for

|Vud| is significantly less precise than superallowed beta decay result, |Vud| = 0.97373(31), as one might

expect.
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Figure 5.6: Results from various collaborations: FNAL/MILC 17 [84], QCDSF/UKQCD 16 [85],
HPQCD 13A [63], ETM 14E [86], RBC/UKQCD 14B [87], MILC 10 [88], BMW 10 [76], ETM 09 [89],
HPQCD/UKQCD 07 [90]. We find that our result (CalLat 20) lies in good agreement. Taken from FLAG [73].

Finally, we check the top-row unitarity condition either assuming the semi-leptonic kaon decay results

for |Vus| or the superallowed beta decay value for |Vud|.

|Vu| = 0.99880(77) (w/ β) (5.29)

|Vu| = 0.9826(96) (w/ K`3) (5.30)

We have incorporated the PDG average |Vub| = 3.82(24)× 10−3, but we note its contribution is minuscule.

Either procedure results in some tension with the top-row unitarity condition.

We finish this chapter my recalling a second motivation for calculating FK/Fπ: being a gold-plated

quantity, it is relatively easy to calculate on the lattice and therefore serves as an important benchmark for

testing the convergence of different discretizations of the QCD action. Moreover, as we intend to continue to

use this action for other calculations, we must verify that our action converges, too. We find that our result

agrees with others (Fig. 5.6).
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Figure 5.7: A representative fit which includes the finest lattice spacing ensemble (left) and a different fit
which excludes that ensemble (right). We find that the finest lattice spacing ensemble, although helpful for
guiding the extrapolation, is not necessary. Figure from [81].

In addition, we find that our action does not require the finest lattice ensemble to obtain our level of

precision, which is not true of all actions (see Figs. 5.3 and 5.7).

73



The hyperon spectrum

Hyperons are a class of baryons containing strange quarks but no heavier quarks. In this chapter we

discuss how hyperon decays can be used to determine |Vus| in a manner orthogonal to FK/Fπ, and we

present some preliminary calculations of the mass spectrum for the cascades, Ξ and Ξ∗, as a stepping stone

for a future determination of the hyperon transition matrix elements.

The work described in this chapter was presented at the 38th International Symposium on Lattice Field

Theory and accompanied with the following proceeding.

N. Miller et al., in 38th International Symposium on Lattice Field Theory (2022) arXiv:2201.01343

[hep-lat].

Background: |Vus| from hyperon decays

In the previous chapter we showed how to determine the CKM matrix element |Vus| using leptonic kaon

decays (K`2) and FK/Fπ. But this is not the only way to determine |Vus|; there is a competing technique

using semi-leptonic kaon decays (K`2) and a lattice calculation of the 0-momentum form factor f+(0).

Unfortunately, there is some tension in the two kaon-based methods (see Fig. 6.1), with the two kaon-

derived values for |Vus| differ by roughly 2σ. We previously mentioned that |Vus| was estimated historically

using hyperon decays and assuming SU(3) flavor symmetry. However, with the lattice we don’t need to make

these assumptions—we can instead directly calculate the relevant hadronic matrix elements.

A lattice determination of the hyperon transition matrix elements, nevertheless, presents its own set of

challenges: the signal is baryonic, not mesonic, and thus inherently noisier than the kaon-based methods; and

unlike the kaon determinations where only a single form factor (or ratio of form factors) need be determined,

there are multiple form factors in hyperon decays that must be accounted for.
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Figure 6.1: Determinations of |Vus| from different sources. The two kaon-derived estimates are taken
from FLAG [73]; the phenomenological hyperon-derived value is taken from the Particle Data Group [72]
(specifically [91]); the semi-inclusive τ -derived average is taken from the Heavy Flavor Averaging Group
[92]. Note that K`2 & FK/Fπ only determine the ratio |Vus|/|Vud|, so here we have also assumed the
Particle Data Group average for |Vud|. The green band spans the minimum/maximum values of |Vus| from
kaon decays. Figure from [93].

To get an idea of how this works, let us write down the transition matrix element T for the semi-leptonic

baryon decay B1 → B2 + l− + νl [71].

T =
GF√

2
Vus

[ axial-vector︷ ︸︸ ︷
〈B2|uγµγ5s|B1〉−

vector︷ ︸︸ ︷
〈B2|uγµs|B1〉

]
lγµ(1− γ5)νl (6.1)

The transition matrix element can then be related to the decay widths to extract |Vus|, which depends on two

hadronic matrix elements. By projecting out the Lorentz structure, we obtain the form factors.

〈B2|uγµγ5s|B1〉 = gA(q2)γµγ
5 +��������fT(q2)

2M
iσµνq

νγ5︸ ︷︷ ︸
G-parity

+
fP(q2)

2M
qµγ

5 (6.2)

〈B2|uγµs|B1〉 = gV (q2)γµ +
fM(q2)

2M
iσµνq

ν +

CVC︷ ︸︸ ︷
�

����fS(q2)

2M
qµ (6.3)

In total there are six form factors, though one can reduce the total to four by invoking the conserved

vector current (CVC) hypothesis and appealing to G-parity (a generalization of C-parity to multiplets [94]).

Given recent measurements of the hyperon decay widths from the LHCb experiment [95], we believe we can

extract a competitive hyperon-derived value of |Vus| so long as we can determine the transition form factors

to ∼1%.
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Before we can calculate all the hyperon transition form factors, however, we will undertake a few

more modest goals: first we will calculate the hyperon mass spectrum and then the hyperon axial charges.

As our final result for these observables will depend upon an extrapolation based on SU(2) χPT for

hyperons [56, 96, 97], it is prudent to study the convergence pattern of this effective field theory (EFT) and to

benchmark our results with the experimental measurements of the hyperon masses. Prior to having precise

lattice QCD results for hyperon quantities, SU(3) baryon chiral perturbation theory (χPT) was utilized to

relate the otherwise numerous low-energy-constants (LECs) describing various processes involving hyperons.

However, SU(3) heavy baryon χPT generally does not exhibit a converging expansion [98, 99, 100]. Lattice

QCD can be used to determine the more extensive set of LECs that arise in SU(2) (heavy) baryon χPT for

hyperons, thus providing the theory with predictive power. The benefit of checking the heavy baryon χPT

predictions using the masses are twofold: first, experimental measurements are readily available; second,

masses are relatively easy to calculate on the lattice.

The next step will be to calculate the hyperon axial charges. The leading order LECs that contribute to the

hyperon axial charges also describe the pion exchange between hyperons as well as the radiative pion-loop

corrections to the hyperon spectrum. Therefore a precise determination of the axial charges will improve the

determination of other observables derived from these Lagrangians. These same hyperon axial charge LECs

will also be important for understanding the hyperon-nucleon interactions germane in light hyper-nuclei and

possibly for understanding the role of hyperons in neutron stars.

Project goals & lattice details

The eventual goal of this program is to calculate the hyperon transition matrix elements as motivated by

the previous section. To perform these calculations, we employ an EFT for hyperons as derived in [56, 96, 97]

that relies on heavy baryon χPT. The first goal of this project is to test the convergence of the EFT employed

in this work. To that end, we will first calculate the hyperon mass spectrum, which we determine by taking

the chiral mass formula derived from this EFT and extrapolating to the physical point. Later we will calculate

the hyperon axial charges and the other transition form factors, which will allow us to determine the transition

matrix elements.

The hyperon spectrum has been calculated numerous times, for example in [48, 101]. There has been

comparatively less work on the hyperon axial charges. The first lattice determination of the hyperon axial
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Figure 6.2: MΞ as a function of m2
π for each of our ensembles. Here the lattice spacings range from ∼0.06

fm (purple) to ∼0.15 fm (red). We convert from lattice units to physical units by scale setting with MΩ

and the gradient flow scale w0 as explained in Chapter 4. The violet bands denote the physical point values
of each observable; for MΞ in particular, discrepancies between the physical pion mass ensembles and the
physical point vanish once the strange quark mistuning and lattice spacing effects are accounted for. Figure
from [93].

charges occurred in 2007 but only involved a single lattice spacing [102]; a calculation involving a physical

pion mass ensemble and an extrapolation to the continuum limit didn’t occur until 2018 [103]. However,

that work only employed a Taylor extrapolation, not a χPT-motivated extrapolation to the continuum limit.

Moreover, our work will benefit from the inclusion of three lattice spacings at the physical pion mass (four in

total).
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Extrapolation details

Let us consider the strangeness S = 2 hyperons, i.e. the (strange) cascades. The chiral expressions for

the mass formulae are as follows

M
(χ)
Ξ = M

(0)
Ξ + σΞΛχε

2
π M

(χ)
Ξ∗ = M

(0)
Ξ∗ + σΞΛχε

2
π

− 3π

2
g2
πΞΞΛχε

3
π − 5π

6
g2
πΞ∗Ξ∗Λχε

3
π

− g2
πΞ∗ΞΛχF(επ, εΞΞ∗ , µ) − 1

2
g2
πΞ∗ΞΛχF(επ,−εΞΞ∗ , µ)

+
3

2
g2
πΞ∗Ξ(σΞ − σΞ)Λχε

2
πJ (επ, εΞΞ∗ , µ) +

3

4
g2
πΞ∗Ξ(σΞ − σΞ)Λχε

2
πJ (επ,−εΞΞ∗ , µ)

+ α(4)
Ξ Λχε

4
π log ε2π + β

(4)
Ξ Λχε

4
π + α(4)

Ξ∗Λχε
4
π log ε2π + β

(4)
Ξ∗ Λχε

4
π

where the non-analytic functions correspond to loop diagrams in SU(2) heavy baryon χPT and are defined as

so

F(επ, ε, µ) = −ε
(
ε2 − ε2π

)
R

(
ε2π
ε2

)
− 3

2
ε2πε log

(
ε2π

Λ2
χ

µ2

)
− ε3 log

(
4
ε2

ε2π

)
, (6.4)

J (επ, ε, µ) = ε2π log

(
ε2π

Λ2
χ

µ2

)
+ 2ε2 log

(
4
ε2

ε2π

)
+ 2ε2R

(
ε2π
ε2

)
, (6.5)

R(x) =


√

1− x log
(

1−
√

1−x
1+
√

1−x

)
, 0 < x ≤ 1

2
√
x− 1 arctan

(√
x− 1

)
, x > 1

(6.6)

and we have defined the small parameters

επ =
mπ

Λχ
εΞΞ∗ =

M
(0)
Ξ∗ −M

(0)
Ξ

Λχ

with again the chiral scale/renormalization scale set at Λχ = 4πFπ.

From glancing at the chiral expressions, we can immediately glean a few insights. First, in this EFT,

baryons of the same strangeness will share many common LECs. Thus we see an immediate advantage

of a chiral extrapolation over independent Taylor extrapolations of each: simultaneously fitting both mass

formulae will result in more precise determinations of the LECs, which in turn will lead to more precise

extrapolations to the physical point. Second, when we later include the axial charges in our analysis, we
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+1 : Taylor O(m2
π)

+1 : χPT O(m3
π)

+3 : Taylor O(m4
π) + χPT

{
0, O(m3

π), O(m4
π)
}

5 : chiral choices

×5 : chiral choices
×2 :

{
O(a2),O(a4)

}
×2 : incl./excl. strange mistuning
×2 : natural priors or empirical priors
40 : total choices

Table 6.1: Models employed in this work.

see that our analysis will benefit twice: once from simultaneously fitting the two and three point functions,

thereby improving our determination for the energies on each lattice [104], and later when performing the

extrapolation to the physical point. Finally, the LECs are manifestly dimensionless as written, other than the

constant terms M (0)
Ξ and M (0)

Ξ∗ . Indeed, the only other dimensionful quantity in the expansion is the cutoff

Λχ.

Results

We explore a range of models (summarized in Table 6.1) with the models weighted according to their

Bayes factors and averaged per the procedure described in Appendix C. There are five choices for the chiral

expansion. We begin by considering a pure Taylor extrapolation to leading order (LO), i.e. O(m2
π). Next we

consider extensions of the LO fit to next-to-leading-order (NLO), i.e. χPT O(m3
π) terms. At N2LO, should

we choose to include terms of this order, we consider either a pure Taylor term with or without the inclusion

of χPT terms up to O(m4
π). Regardless of the pion mass extrapolation, we assume the observables have

common LECs per the chiral expression above. Fig. 6.3 explores the impact of these different models.

Next we explore corrections specific to the lattice, starting with lattice discretization corrections up to

O(a4). We also explore the impact of our simulated strange quark mass being slightly mistuned from the

physical value.

The priors for the axial charges are set from either experiment or prior lattice calculations [96] but with

appreciable (20%) width. The remaining dimensionless LECs are independently priored per the Gaussians

N (0, 22) as is commensurate with “naturalness” expectations. The dimensionful constant terms M (0)
Ξ and

M
(0)
Ξ∗ are the exception here and are priored at the physical value of M (0)

Ξ with a 20% width. We have labeled

these the natural priors. We have also explored an alternative set of priors derived from the empirical Bayes

method (see Appendix C).
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PDG PDG

Figure 6.3: Truncation of the chiral expansion to different orders in the pion mass. We have adopted a
“data-driven” analysis, i.e. we give no a priori weight to any of the different chiral models. Although the
LO fit only comprises 1/5 of the total models used in this analysis (see Table 6.1), they still contribute more
to the model average than the 2/5 of models that truncate at NLO instead. Further, the LO fits contribute
almost as much as 2/5 of models that include N2LO terms. The vertical red band is the Particle Data Group
average [72]. Figure from [93].

After model averaging, we report the masses to be

MΞ = 1339(17)s(02)χ(05)a(00)phys(01)M MeV = 1339(18) MeV (6.7)

MΞ∗ = 1542(20)s(03)χ(06)a(00)phys(03)M MeV = 1542(21) MeV (6.8)

Again we have separated the errors as induced by statistics (s), chirality (χ), lattice discretization (a), physical

point input (phys), and model averaging (M). We have not yet calculated the finite volume corrections.

In this precursory work, we find that a LO Taylor fit describes the data approximately as well as an N2LO

χPT fit. Indeed, including the nonanalytic ε3π term and chiral logarithms at NLO tanks the weight of the

fit, while some cancellation between the NLO and N2LO terms appears to yield an extrapolated value for

the masses virtually identical to the LO results. So far the chiral terms introduced by heavy baryon χPT do

not appear to be useful in guiding our extrapolation; however, knowing the relationship between the LECs

contained in different observables might still prove helpful yet.
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The nucleon sigma term

In this chapter, we present work on a calculation of the nucleon sigma term. For reference, it is defined

as

σπN = m̂ 〈N |(uu+ dd)|N〉 (7.1)

where m̂ = (mu +md)/2. The nucleon sigma term σπN measures the contribution to the nucleon mass by

the explicit breaking of chiral symmetry. It also has implications in certain classes of dark matter searches, as

we will explain shortly.

A callback to the linear-σ model

If the name sounds familiar, it’s because we already encountered the sigma term back in Chapter 3 when

we discussed the linear-σ model (Eq. 3.34). We assumed there was a particle like σ = ψψ (a Lorentz scalar),

which after spontaneous symmetry breaking caused the nucleon to gain a mass term (gv). However, there

still remained an interaction with σ̃ = σ − v.

L ⊃ −N(gv + gσ̃)N (7.2)

If we now include a term −εσ in the potential that explicitly breaks the symmetry (analogous to the explicit

symmetry breaking by the quark masses), the potential (Eq. 3.35) becomes [25]

V (π, σ) = −µ
2

2

(
σ2 + π2

)
+
λ

4

(
σ2 + π2

)2 − εσ (7.3)

with a new minimum at σ → v ≈ v0 + ε/(2λv0) and π → 0 where v0 = µ/
√
λ was the original minimum.

Notably, the pion mass is now non-zero,

m2
π ≈

∂2V

∂σ2

∣∣∣∣
(σ,π)→(v,0)

=
ε

v0
. (7.4)
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This is essentially a statement of the GMOR relation for the linear-σ model. Finally, we see that the nucleon

mass term also picks up a small correction.

gv0NN → g

(
v0 +

ε

2λv0

)
NN (7.5)

If we reinterpret σ as the light quarks uu+ dd, we see that this correction describes the contribution to

the nucleon mass from explicit chiral symmetry breaking, which is exactly what σπN is meant to measure.

In fact, this expression suggests that at leading order σπN ∼ m2
π, a prediction also supported by chiral

perturbation theory.

Relevance to dark matter searches

Among the simplest extensions to the Standard Model is the so-called minimal supersymmetric Standard

Model (MSSM), which in the process of solving the Higgs hierarchy problem [105], could also explain

the abundance of dark matter in the universe by way of weakly interacting massive particles. Specifically,

the lightest supersymmetric particle, the neutralino χ, would be the dark matter candidate. The MSSM

Lagrangian describes the interaction of this particle with nucleons through the terms [106]

LMSSM ⊃α1f

(
χγµγ

5χ
) (
qfγ

µqf
)

+ α2f

(
χγµγ

5χ
) (
qfγ

µγ5qf
)

+ α3f (χχ)
(
qfqf

)
(7.6)

+ α4f

(
χγ5χ

) (
qfγ

5qf
)

+ α5f (χχ)
(
qfγ

5qf
)

+ α6f

(
χγ5χ

) (
qfqf

)
which are summed over the quark flavors. The terms can be classified as velocity-independent (α2f , α3f

coefficients) and velocity-dependent (the rest). For direct dark matter searches like the LUX-ZEPLIN

experiment [107], these terms are suppressed by a factor of (v/c)2 ∼ 10−8, with v roughly the relative

speed between the Earth and the Sun, and are therefore largely irrelevant. (For indirect searches like

Super-Kamiokande [108], however, these velocity-dependent terms are more important).

Of the two velocity-independent terms, one is spin-dependent (α2f ) and the other spin-independent (α3f ).

Let us focus on the spin-independent term. The cross section is given by [109]

σSI =
4m2

r

π
[Zfp + (A− Z)fn]2 . (7.7)
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with A the mass number, Z the proton number, and mr the neutralino-nucleon reduced mass. Buried in the

definitions of fp and fn lies the dependence on the flavor sigma terms.

fN
MN

=
∑

f=u,d,s

f
(N)
Tf

α3f

mf
+

2

27
f

(N)
TG

∑
q=c,b,t

α3f

mf
(7.8)

where N = p, n and

mNf
(N)
Tf

= 〈N |mfqfqf |N〉 (7.9)

f
(N)
TG = 1−

∑
q=u,d,s

f
(N)
Tf

. (7.10)

The importance of the sigma terms here shouldn’t be understated—the nucleon sigma term is currently

the largest source of uncertainty when calculating the spin-independent neutralino-nucleon cross section; the

authors of said uncertainty analysis literally plead for a campaign to better determine the sigma term [109].

Measuring σπN via the Feynman-Hellman theorem

There are two techniques one can employ on the lattice to calculate the sigma term. First there is the direct

method. Notice that Eq. 7.1 is just a matrix element. We can calculate it on the lattice by having a nucleon at

the source and sink and then inserting a quark current in the middle. In principle this is straightforward, but it

does suffer disadvantages; in particular, this requires fitting a baryonic 3-point function and dealing with all

the ensuing messiness.

Alternatively, one can relate the sigma term to the nucleon mass via the Feynman-Hellmann theorem [115,

116], which means one fewer thing to generate on the lattice. The theorem states that given a Hermitian

operator H depending on a real parameter λ with normalized eigenvectors |ψ(λ)〉 and eigenvalues E(λ),

〈
ψ(λ)

∣∣∣∣ ∂∂λH(λ)

∣∣∣∣ψ(λ)

〉
=
∂E

∂λ
. (7.11)

Let’s apply this theorem to the nucleon. In particular, we know that the QCD Hamiltonian has a term like

HQCD ⊃ muuu+mddd (7.12)

= m̂(uu+ dd) +
1

2
δm(uu− dd)
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Figure 7.1: Estimates of σπN from the lattice and phenomenology. The phenomenological results are
denoted by the blue circles; the lattice results are in green and red, with the green values (QCDSF 12 [110],
χQCD 15A [111], BMW 15 [112], BMW 11A [112], ETM 14A [113]) passing the FLAG criteria for being
“reasonably consistent”. In addition, Gupta et al. [114] have a recent result near the center of ETM 14A
but with tighter error bars. In summary, most lattice calculations are around ∼ 40 MeV, whereas most
phenomenological results are around ∼ 55 MeV. Figure from FLAG [73].

where we have defined m̂ = (mu + md)/2 and δm = md − mu. With normalized eigenstates |N〉 and

eigenvalues MN , we find that

〈
N

∣∣∣∣ ∂∂m̂ [
m̂
(
uu+ dd

)]∣∣∣∣N〉 =
∂MN

∂m̂
. (7.13)

Comparing this result with Eq. 7.1 yields the desired result.

σπN = m̂
∂MN

∂m̂
(7.14)

However, this technique isn’t without tradeoffs. Although now the sigma term can be calculated using

only the nucleon correlator, the quoted result will be dependent on the derivative of the nucleon mass fit. It is

not just sufficient that our different fit models converge to the same value at the physical point; they must

approach the physical point at the same rate.
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Finagling an expression for the sigma term

Recasting the nucleon mass derivative into something more manageable

Although we could, in principle, use Eq. 7.14 to determine the nucleon sigma term, it is not a convenient

expression for calculations on the lattice. Instead of taking a derivative with respect to m̂, we would prefer to

take a derivative with respect mπ or (better yet) επ = mπ/Λχ, as these are the data we have readily available.

As a starting point, we can of course write

m̂
∂MN

∂m̂
= m̂

∂m2
π

∂m̂

∂MN

∂m2
π

. (7.15)

To NLO, 1 the pion mass can be perturbatively related to m̂ by

m2
π ≈ 2Bm̂ (1 + δm2) =⇒ m̂ ≈ m2

π

2B
(1− δm2) (7.16)

where δm2 is the NLO correction. Therefore to NLO

m̂
∂m2

π

∂m̂
≈ m2

π

2B
(1− δm2)

∂

∂m̂

[
2Bm̂ (1 + δm2)

]
= m2

π

(
1− δm2

)(
1 + δm2 + m̂

∂δm2

∂m̂

)
≈ m2

π

(
1 + m̂

∂δm2

∂m̂

)
(7.17)

At this point we need the expression for δm2 [117],

δm2 =
1

2

2Bm̂

(4πF )2

[
log

(
2Bm̂

µ2

)
+ 4l

r
3(µ)

]
, (7.18)

1Unfortunately the literature defines “LO” differently for meson χPT (O(1)) versus baryon χPT (O(ε2)). We will stick
with the literature here. If an expression mixes baryon and meson χPT expressions (e.g., MN/Fπ), we will use the
baryon power-counting scheme. We will refer to the O(1) contributions in baryon χPT as LLO (“less-than-leading
order”).
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which has partial derivative

∂δm2

∂m̂
=

1

2

2B

(4πF )2

[
log

(
2Bm̂

µ2

)
+ 1 + 4l

r
3(µ)

]
≈ 1

2

2B

(4πF )2

[
log

(
2Bm̂

µ2

)
+ 1−

(
l3 + log

m2
π

µ2

)]
≈ 1

2

2B

(4πF )2

(
1− l3

)
≈ 1

2

ε2π
m̂

(
1− l3

)
(7.19)

where in the second line we have related the renormalized LEC l
r
3(µ) to the barred LEC l3 by [118]

l
r
i =

γi
2

[
li + log

(
m2
π

µ2

)]
where γ3 = −1

2
and γ4 = 2 . (7.20)

In the third line we have combined the logarithms by rounding to NLO, and in the fourth line we have rounded

to NLO again after approximating 2Bm̂ ≈ m2
π and F ≈ Fπ.

Putting everything together, we get an expression for the nucleon sigma term to NLO that doesn’t

explicitly depend on m̂,

σπN ≈ m2
π

[
1 +

1

2
ε2π
(
1− l3

)] ∂MN

∂m2
π

. (7.21)

Next we would like to rewrite the derivative with respect to επ instead of m2
π. Rewriting the derivative as

∂MN

∂m2
π

=
1

2επ

∂ε2π
∂m2

π

∂MN

∂επ
, (7.22)

we find that we must calculate

∂ε2π
∂m2

π

=
1

(4πF 2
π )

[
1− 2

m2
π

Fπ

∂Fπ
∂m2

π

]
. (7.23)

At this point it’s evident that we also require the partial derivative ∂Fπ/∂m2
π. The chiral expression for

Fπ to NLO is [117]

Fπ ≈ F (1 + δF ) =⇒ F ≈ Fπ(1− δF ) (7.24)
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where δF is the NLO piece,

δF =
2Bm̂

(4πF )2

[
− log

(
2Bm̂

µ2

)
+ l

r
4(µ)

]
. (7.25)

Now we write simplify the derivative

∂Fπ
∂m2

π

≈ F ∂δF
∂m2

π

≈ F ∂

∂m2
π

{
m2
π

(4πF )2

[
− log

(
m2
π

µ2

)
+ l

r
4(µ)

]}
= F

1

(4πF )2

[
−1− log

(
m2
π

µ2

)
+ l

r
4(µ)

]
= F

1

(4πF )2

[
−1− log

(
m2
π

µ2

)
+

(
l4 + log

(
m2
π

µ2

))]
= F

1

(4πF )2

(
−1 + l4

)
≈ Fπ

ε2π
m2
π

(
−1 + l4

)
. (7.26)

which means

∂ε2π
∂m2

π

=
1

(4πF 2
π )

[
1− 2

m2
π

Fπ

∂Fπ
∂m2

π

]
≈ 1

(4πF 2
π )

[
1 + 2ε2π

(
1− l4

)]
(7.27)

Combining everything yields the desired result

σπN ≈
1

2
επ

[
1 +

1

2
ε2π
(
1− l3

) ][
1 + 2ε2π

(
1− l4

) ]∂MN

∂επ

≈ 1

2
επ

[
1 + ε2π

(
5

2
− 1

2
l3 − 2l4

)]
∂MN

∂επ
. (7.28)

Accounting for the Gasser-Leutwyler LECs

Inspecting Eq. 7.28, we find that the only dimensionful quantity is MN . This is not technically an

issue for us since we have completed our scale setting (Chapter 4). However, we would prefer to avoid

introducing a scale as much as possible, since introducing a scale correlates data across ensembles via that

scale (ensembles are otherwise uncorrelated).
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Moreover, we find that at NLO we require determinations of l3 and l4, which are the Gasser-Leutwyler

LECs defined at a different scale µ (see Eq. (7.20)). These LECs are compiled in FLAG, but they are also

accessible with our lattice data; in fact, it would behoove us to calculate these, too, for reasons that will be

evident shortly.

Observe we can expand the derivative in Eq. 7.28 as so

∂MN

∂επ
= Λχ

∂(MN/Λχ)

∂επ
+
MN

Λχ

∂Λχ
∂επ

, (7.29)

resulting in the following expression for the sigma term,

σπN ≈
1

2
επ

[
1 + ε2π

(
5

2
− 1

2
l3 − 2l4

)][
Λχ

∂(MN/Λχ)

∂επ
+
MN

Λχ

∂Λχ
∂επ

]
. (7.30)

Recall that we set Λχ = 4πFπ. Clearly this form for the sigma term requires us to additionally fit Fπ. One

might object to this strategy: although we removed the scale setting requirement for MN , now we have a

scale setting requirement for Fπ!

However, given the choice between a difficult fit of MN and a difficult fit of Fπ, the latter is preferred.

Fitting Fπ requires only SU(2) (meson) χPT, which has been rather successful; fitting MN , in contrast,

requires SU(2) heavy baryon χPT, which converges more slowly.

Furthermore, as we will see when we discuss the results of this analysis, splitting the terms this way has

interesting consequences on where the bulk of the contribution to the sigma term comes from (to preview:

not the nucleon part!).

Project goals

To summarize, we can determine σπN through the following procedure:

1. Fit MN/Λχ in lattice units (since we have lattice data for both of these observables).

2. Fit Fπ in physical units (using our scale setting results).

3. Extract the l4 LECs from the Fπ fit.

4. Calculate the derivatives.

5. Combine all results (plus the FLAG result for l3) to determine σπN using Eq. (7.28).
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Note that in this preliminary work we do not determine l3, as this requires us to fit mπ also. However,

our collaboration plans to include the mπ fit in future work.

Extrapolation functions

Fit function for Fπ

Again, we separate our fit function as F fit
π = F chiral

π + F disc
π . The SU(2) χPT expression for Fπ to O(ε4)

is given by

F chiral
π ≈ F0

[
1 + ε2π

(
− log ε2π + l

r
4

)
+ ε4π

(
5

4
log2 ε2 + α(4)

F log ε2π + β
(4)
F

)]
(7.31)

Notice that the expression recorded here is much simpler than the one from Chapter 5—we are employing

SU(2) χPT this time, not SU(3) χPT . For now we do not include finite volume corrections (as we haven’t

yet worked these out for the baryons), so F disc
π only contains terms that are a Taylor expansion in the lattice

spacing.

We will need the reciprocal of this expression soon for MN/Λχ, so we note it now.

1

Fπ
≈ 1

F0

[
1− ε2π

(
− log ε2π + l

r
4

)
(7.32)

+ ε4π

((
l
r
4

)2
− β(4)

F −
(
α(4)
F + 2l

r
4

)
log ε2π −

1

4

(
log ε2π

)2)]
.

Fit function forMN

We first note the SU(2) heavy baryon χPT expression for MN [119],

M chiral
N = M

(0)
N (LLO) (7.33)

+ β(2)
N Λχε

2
π (LO)

− 3π

2
g2
πNNΛχε

3
π −

4

3
g2
πN∆ΛχF(επ, εN∆, µ) (NLO)

+ γ(4)
N Λχε

2
πJ (επ, εN∆, µ) (N2LO)

+ α(4)
N Λχε

4
π log ε2π + β

(4)
N Λχε

4
π .
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Figure 7.2: Pion mass dependence of Fπ. The red, green, blue, and purple bands denote a lattice spacing
of roughly 0.15, 0.12, 0.09, 0.06 fm, respectively. The hashed band is the extrapolation in the continuum
(a = 0) limit. Note the non-trivial lattice spacing dependence, as evident by the crossing of the different pion
spacings near επ ≈ 0.18.

Charge Value Source
gπNN 1.27 CalLat
gπN∆ -1.48 Expt.
gπ∆∆ -2.20 SU(3)

Table 7.1: Predicted/measured values of the axial charges per [120, 96]. The SU(3) predictions are obtained
by three-flavor heavy baryon χPT as outlined in [121].

We recall that the non-analytic functions are defined as so

F(επ, ε∆, µ) = −ε∆
(
ε2∆ − ε2π

)
R

(
ε2π
ε2∆

)
− 3

2
ε2πε∆ log

(
ε2π

Λ2
χ

µ2

)
− ε3∆ log

(
4
ε2∆
ε2π

)
, (7.34)

J (επ, ε∆, µ) = ε2π log

(
ε2π

Λ2
χ

µ2

)
+ 2ε2∆ log

(
4
ε2∆
ε2π

)
+ 2ε2∆R

(
ε2π
ε2∆

)
, (7.35)

R(x) =


√

1− x log
(

1−
√

1−x
1+
√

1−x

)
, 0 < x ≤ 1

2
√
x− 1 arctan

(√
x− 1

)
, x > 1

. (7.36)

We have left the renormalization scale dependence explicit here. These terms depend on the masses of

the nucleon and the ∆ resonance. For MN , we use the lattice value; for M∆, we use the PDG value. The

estimates for the axial charges are listed in Table 7.1.
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As written, it is clear that the factors of Λχ will cancel in all but the LLO term when multiplying

Eq. (7.33) by Eq. (7.32).

(
MN

Λχ

)chiral

=

starts at LLO︷ ︸︸ ︷
M

(0)
N

Λχ
(LLO) (7.37)

+ β(2)
N ε2π (LO)

− 3π

2
g2
πNN ε

3
π −

4

3
g2
πN∆F(επ, εN∆, µ) (NLO)

+ γ(4)
N ε2πJ (επ, εN∆, µ) (N2LO)

+ α(4)
N ε

4
π log ε2π + β(4)

p ε4π

For a Taylor-type fit, we can drop the non-analytic functions as well as the O(ε3) term (which is not

analytic in ε2). Additionally we treat the LLO term as a constant. Otherwise we should expand the LLO term,

whose contributions are in green.

(
MN

Λχ

)chiral

=c0 (LLO) (7.38)

+
(
β(2)
N − c0`

r
4

)
ε2π + c0ε

2
π log ε2π (LO)

− 3π

2
g2
πNN ε

3
π −

4

3
g2
πN∆F(επ, εN∆, µ) (NLO)

+

(
β

(4)
N + c0

(
`
r
4

)2
− c0β

(4)
F

)
ε4π + γ(4)

N ε2πJ (επ, εN∆, µ) (N2LO)

− 1

4
c0ε

4
π

(
log ε2

)2
+
(
α(4)
N − c0α

(4)
F − 2c0`

r
4

)
ε4π log ε2π

We note that unless we simultaneously fit MN/Λχ with Fπ, we will not be able to disentangle some of

these LECs, for example c0, l
r
4, and β(2)

N . In this case we can instead fit β̃(2)
p = (c0l

r
4 + β(2)

p ). If we combine

the other LECs in this manner, then the only functional differences between the two equations (ignoring the

LLO term in Eq. (7.37)) are the extra log ε2π term at LO and (log ε2π)2 term at N2LO.

As a final caveat regarding the chiral expression, we comment that the J term at N2LO probably cannot

be resolved without simultaneously fitting the ∆, which presents its own problems. For now we drop this

term from our fits.
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Figure 7.3: Example extrapolation as a function of the pion mass (left) and lattice spacing (right). Notice
that, unlike the Fπ extrapolation, the fit of MN/Λχ has virtually no lattice spacing dependence.

Finally, the only discretization corrections we consider for now are counterterms in the lattice spacing

starting at O(ε2). However, as is clear from Eq. 7.3, we could drop these terms; there is no appreciable lattice

spacing dependence here.

Derivatives of fit functions

Once we have fit our extrapolation functions, we must take the derivative with respect to επ (while

keeping track of the correlations for purposes of error propagation). The most straightforward way to

calculate this derivative is by taking the derivative of Eq. (7.33), but we will separate out the MN/Λχ and Λχ

derivatives so we can estimate their individual contributions to σπN .

επΛχ
∂(MN/Λχ)

∂επ
= επΛχ

{ starts at LLO︷ ︸︸ ︷
−M

(0)
p

Λ2
χ

∂Λχ
∂επ

(LLO)

+ 2β(2)
p επ (LO)

− 9π

2
g2
πppε

2
π −

4

3
g2
πp∆∂επF(επ, εp∆) (NLO)

+ γ(4)
p

[
2επJ (επ, εp∆) + ε2π∂επJ (επ, εp∆)

]
(N2LO)

+ α(4)
p

[
4ε3π log ε2π + 2ε3π

]
+ 4β(4)

p ε3π

}
(7.39)

92



The derivatives of the non-analytic functions are listed below.

∂F
∂επ

=
2ε3∆
επ
− 3ε∆επ log

(
ε2π
)
− 3ε∆επ +

(
2ε3π
ε∆
− 2ε∆επ

)
R′
(
ε2π
ε2∆

)
+ 2ε∆επR

(
ε2π
ε2∆

)
(7.40)

∂J
∂επ

= −4ε2∆
επ

+ 4επR
′
(
ε2π
ε2∆

)
+ 2επ log

(
ε2π
)

+ 2επ (7.41)

R′(x) =


1
x −

log
(

1−
√
1−x√

1−x+1

)
2
√

1−x 0 < x < 1

2 x = 1

1
x +

tan−1(
√
x−1)√

x−1
x > 1

(7.42)

The Λχ derivative at LLO can be combined with the Λχ derivative in Eq. (7.30). Expanding to the first

non-zero term, we have

επ

(
MN

Λχ
− M

(0)
p

Λχ

)
∂Λχ
∂επ

≈ επ
(
β(2)
p ε2π

) (
2επ(l4 − 1)Λχ

)
(7.43)

= 2β(2)
p (l4 − 1)Λχε

4
π . (N2LO)

Results

In this preliminary exploration for σπN , we consider a mere 4 models: Taylor terms to O(ε4) with either

zero, LO, NLO, or N2LO χPT corrections. The discretization errors are modeled at O(ε2) for the Fπ fits,

with the posterior for the discretization LECs compatible with zero for the MN/Λχ fits. We omit higher

order discretization counterterms as these tank the weights. These models are compared in Fig. 7.4. After

averaging, we find

MN = 951.5(5.4)s(1.7)χ(0.0)a(5.8)phys(3.8)M MeV = 951.5(9.0) MeV (7.44)

σπN = 47.6(1.8)s(1.7)χ(0.0)a(0.6)phys(5.2)M MeV = 47.6(5.9) MeV (7.45)

As previously hinted at, we can make an amusing observation if we split the sigma term in the following

manner.
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Figure 7.4: Histograms of MN = (MN/Λχ)Λ
phys
χ and σNπ. The result for MN agrees with the PDG value

(thin red band), while the histogram for σNπ must be interpreted more carefully. The red band on the right is
the result from BMW 2020, a typical lattice determination of the sigma term which has been included for
reference. We find that the distribution is multimodal, with the Taylor expansion contributing the most weight
to the model average. However, we caution against giving too much credence to the Taylor fit: although
we have priored our models equally here, we have a priori reason to believe the Taylor fit is misleading us.
Specifically, we do not believe the Taylor model accurately captures the lattice spacing dependence for σπN ,
as we expect the contribution from Λχ to compete against the LLO contribution from MN/Λχ, which is not
possible if the LLO term is just a constant.

σNπ =
1

2
επ

[
1 + ε2π

(
5

2
− 1

2
`3 − 2`4

)
+O

(
ε3π
)]

∂MN
∂επ︷ ︸︸ ︷[

Λ∗χ
∂ (MN/Λχ)

∂επ
+
M∗N
Λ∗χ

∂Λχ
∂επ

]
If we calculate each of these terms individually (including the επ/2 prefactor), we find

1

2
επΛ∗χ

∂ (MN/Λχ)

∂επ
=

1

2
Λ∗χ

[(
−2c0

(
`4 − 1

)
+ 2β(2)

N

)
ε2π +O

(
ε3π
)]
∼ 10 MeV

1

2
επ
M∗N
Λ∗χ

∂Λχ
∂επ

=
1

2
M∗N

[
2
(
`4 − 1

)
ε2π +O

(
ε3π
)]
∼ 40 MeV

We make two important observations: (1) the bulk of the contribution to the sigma term comes from

the fit of Λχ, not MN/Λχ. (2) The determination of the sigma term is highly sensitive to the value of l4, as

demonstrated in Fig. 7.5. A precise determination of Fπ (from which we can extract l4) is therefore essential

to better constrain our result for the sigma term.
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Figure 7.5: Left: FLAG average for l4, including results from RBC/UKQCD 15E [122], Gulpers [123],
Brandt [124], BMW 13 [125], Borsanyi [126], NPLQCD 11 [127], MILC 10 [88], ETM 11 [128],
ETM 09C [129], ETM 08 [130] (figure taken from [73]). Right: LO dependence of σπN on l4 (blue
band). Like σπN , there is a great deal of variation in measurements of l4 . If l4 is on the smaller side, we
get something close to a typical lattice calculation; if l4 is instead large, we get something closer to the
phenomenological result. A precise fit of Fπ is therefore integral to precisely determining σπN using the
strategy outlined in this chapter.

In future work, we plan to include a fit of mπ in our analysis so that we can determine l3. We will

additionally fit MN directly using our scale setting to be compared the technique presented here in which we

instead fit MN/Λχ and Λχ.
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PROPERTIES OF THE GAMMA MATRICES AND PROJECTION OPERATORS

Gamma matrices

Recall that the gamma matrices generate a representation of the Clifford algebra C`1,3(R) and are defined

by the anticommutative relation

{γµ, γν} = 2ηµ,ν . (A.1)

It is useful to also define the “fifth” gamma matrix,

γ5 = iγ0γ1γ2γ3 , (A.2)

which can be used to project out the different chiral components of a Dirac bispinor.

In the Weyl/chiral basis, these matrices take the form

γ0 Weyl
=

0 1

1 0

 γk
Weyl
=

 0 σk

−σk 0

 γ5 Weyl
=

−1 0

0 1

 . (A.3)

These matrices have the following useful properties, independent of basis:

(
γ5
)†

= γ5 (Hermitian) (A.4)(
γ5
)2

= 1 (Involutory) (A.5){
γ5, γµ

}
= 0 (Anticommutative with γµ) (A.6)

Projection operators

Recall that we define the projection operators as

PL =
1

2

(
1− γ5

)
PR =

1

2

(
1+ γ5

)
. (A.7)
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The projection operators have the following useful properties:

PL + PR = 1 (Complete) (A.8)

P 2
L = PL P 2

R = PR (Idempotent) (A.9)

PLPR = PRPL = 0 (Orthogonal) (A.10)

Combining identities from the previous section with those above, we find that

qΓq = qLΓqL + qRΓqR Γ ∈
{
γµ, γµγ5

}
(A.11)

qΓq = qLΓqR + qRΓqL Γ ∈
{

12×2, γ
5, Sµν

}
(A.12)

where Sµν = i
4 [γµ, γν ] and

qL = PLq qR = PRq qR = qPL qL = qPR . (A.13)

97



LATTICE PARTICULARS & ENSEMBLE DATA

Recall from the introduction that there are numerous way to discretize QCD (a few different choices are

shown in Table B.1). However, that doesn’t mean all choices are equally good—each choice has its own set

of advantages and drawbacks. For example, the action derived in Chapter 1 (known as the naive action) has a

couple pesky problems: first, the fermions do not respect chiral symmetry even in the massless limit; second,

for each fermion described by the action, there are 15 extra fermions in what is dubbed the fermion doubling

problem. Wilson demonstrated how to remove the doublers [131], but even so the fermions did not respect

chiral symmetry.

In fact, this is not from a lack of cleverness (as if anyone would have the audacity to accuse Wilson of

such). The Nielsen-Ninomiya theorem [132] states that, given an even dimensional lattice gauge theory, it is

impossible to build a lattice action that simultaneously (1) has no fermion doublers, (2) acts locally (i.e., only

nearest neighbors can interact), and (3) respects chiral symmetry.

That said, there is a loophole here, as the Nielsen-Ninomiya theorem only applies to even dimensional

theories. It is possible to build an odd dimensional theory that satisfies all three desiderata, with the fermions

we’re interested in living on the 4-dimensional surface of this 5-dimensional volume; this is roughly the

philosophy behind domain wall fermions.

Beyond mathematical restraints, however, there are funding constraints the aspiring lattice practitioner

must consider: the computational price for each fermion action is different. Moreover, since these actions

are simulated on half-billion dollar high-performance computers, these computations costs have palpable

financial costs, too. For reference, it is roughly an order of magnitude more expensive to simulate a domain

wall fermion than a staggered fermion.

Fermion
action

Doublers Local
Chiral
symmetry

Cost

Naive Yes (16) Yes No Cheap
Wilson-Clover No Yes No Cheap
Staggered Yes (4) No Some Cheap
Domain Wall No Yes Yes Expensive
Overlap No No Yes Expensive

Table B.1: A few different fermion actions for lattice QCD. We use a mixed-action, with domain wall
fermions in the valence sector and staggered quarks in the sea.
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Figure B.1: Ensembles employed in these projects. The pion masses range from ∼ 130 MeV to ∼ 400 MeV,
while the lattice spacing range from ∼ 0.06 fm to ∼ 0.15 fm. The strange quark masses are generally tuned
near their physical point values, with a few lighter-than-physical strange quarks such that we have the option
to track the slight mistuning.

Our collaboration uses a mixed action, that is, we employ a different action for the sea and valence

quarks. For the sea quarks, we use staggered fermions (with MILC providing many of the staggered quark

configurations [133, 134]). For the valence sector, we use domain wall fermions [77].

These projects use data from approximately 20 ensembles spanning 7 pion masses and multiple lattice

spacings (see Fig. B.1).
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SUMMARY OF CURVE FITTING TECHNIQUES

General considerations when extrapolating an observable to the physical point

In this thesis we have performed extrapolations of chiral observables (i.e., observables that have χPT

expressions). The procedure for extrapolating a chiral observable is nearly identical for a given observable

modulo the particular fit function. We summarize the procedure here.

Given an observable O with mass dimension 0, the generic extrapolation function can be written

Ofit = Ochiral +Odisc . (C.1)

Here Ochiral = Ochiral({mGi}) denotes the collection of terms that depend strictly on the pseudo-Goldstone

bosons, while Odisc = Odisc(a, L, . . .) denotes the remaining terms which arise from having employed the

lattice.

The Ochiral terms come in two varieties in this thesis: either they are derived from χPT or they are a

Taylor expansion, the latter class being primarily used to test the “goodness” of the χPT fits. For example,

we might have

Ochiral =O0

(
O(ε0)

)
(C.2)

+
∑

G∈{π,K}

ε2Gα
(2)
G

(
O(ε2)

)
+

∑
G∈{π,K}

ε4Gα
(4)
G

(
O(ε4)

)
+ ε4πβ

(4)
π log ε2π

+
∑

G∈{π,K}

ε6Gα
(6)
G

(
O(ε6)

)
+ ε6πβ

(6)
π log ε2π + ε6πγ

(6)
π

(
log ε2π

)2
where εG = mG/Λχ and the rest are low-energy constants (LECs). When we exclude the log ε2 terms from

our fit, the model reduces to a Taylor expansion.

We have truncated this model at O(ε6), but there are in principle infinitely many more terms we could

add; however, we expect that at some order the signal will be too weak to fit. The reasoning applies to the
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lower order terms, too. Even though the literature might provide chiral expression up to order O(ε6), that

doesn’t mean we’ll necessarily be able to fit it.

In general, we take a model-agnostic approach when fitting, considering different truncations of our chiral

models and averaging over the different models assuming equal weight (see the next section). Occasionally

we might exclude a model if we have good a priori belief that it is not physical. In the case above, we might

consider the models

+1 : Taylor O(ε2)

+2 : Taylor O(ε4) + {0, log ε2}

+3 : Taylor O(ε6) + {0, log ε2, (log ε2)2}

6 : chiral choices

(C.3)

In this case, we’re comparing Taylor models with/without χPT-motivated logarithms. Note that even though

the (log ε2)2 term is also a χPT term at O(ε6), the signal might nevertheless be too weak to fit, depending on

the size of the LEC.

Lattice artifacts primarily stem from the size of the lattice spacings. These artifacts are accounted for by

using a Taylor Ansatz, for example

Odisc ⊃ daε2a +
(
daaε

2
a + dalε

2
π + dasε

2
K

)
ε2a + · · · (C.4)

where εa = a/2w0 is a dimensionless proxy for the lattice spacing (see Chapter 4 for the definition of w0).

The discretization errors start at O(ε2a) as a consequence of the particular lattice action we employ [135].

The next obvious discretization effect comes from the lattice’s finite volume. Although the real world

might be infinite, the lattice certainly isn’t—the typically lattice is only a few femtometers across, so it is

possible for virtual particles to bump into the “edge” of the universe. Or at least it would be, were it not for the

fact that our boundary conditions are periodic. Loop integrals in the effective field theory must consequently

be adjusted for finite volume, as now particles can “wrap around” before interacting. Typically this means

replacing a log with a log plus Bessel function.

Additionally Odisc might include terms that are specific to our choice of lattice action, such as radiative

corrections.
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Once the models have been decided on and the fits have been performed, the final step is to extrapolate

to the physical point, which is defined as the continuum, infinite volume limit where observables take their

physical/PDG values. As our lattice assumes the SU(2) limit, we take the isospin average of observables as

needed, e.g. mπ = (mπ− +mπ0 +mπ+)/3.

All fits are performed using the software packages gvar and lsqfit [136, 137, 138], which implement

nonlinear least squares regression with (Bayesian) priors.

Model averaging

Typically when we extrapolate observables in our work, we consider many different models. Rather than

choose the “best” model (which could lead to bias or underestimate our uncertainty), we instead perform a

model average over the different models employed in our work.

Our averaging procedure is performed under a Bayesian framework, following the procedure described

in [120, 81] and with greater detail in [139]. Suppose we are interested in estimating the posterior distribution

of Y = MΞ, i.e. P (Y |D). To that end, we must marginalize over the different models Mk.

P (Y |D) =
∑
k

P (Y |Mk, D)P (Mk|D) (C.5)

Here P (Y |Mk, D) is the distribution of Y for a given model Mk and dataset D, while P (Mk|D) is the

posterior distribution of Mk given D. The latter can be written, in accordance to Bayes theorem, as

P (Mk|D) =
P (D|Mk)P (Mk)∑
l P (D|Ml)P (Ml)

. (C.6)

We can be more explicit with what the latter is in the context of our fits. First, mind that we are a priori

agnostic in our choice of Mk. We thus take the distribution P (Mk) to be uniform over the different models.

We calculate P (D|Ml) by marginalizing over the parameters (LECs) in our fits:

P (D|Mk) =

∫ ∏
j

dθ(k)
j P (D|θ(k)

j ,Mk)P (θ
(k)
j |Mk) . (C.7)
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After marginalization, P (D|Mk) is just a number. Specifically, it is the Bayes factor of Mk: P (D|Mk) =

exp(logGBF)Mk
. Thus

P (Mk|D) =
exp(logGBF)Mk

K
∑

l exp(logGBF)Ml

(C.8)

with K the number of models included in our average.

Suppose A and B are statistics computed on models {Mk} (e.g., A = MΞ, B = MΞ∗ , and Mk = “a

simultaneous fit of MΞ and MΞ∗ to N2LO in the χPT expansion”). The model average of an observable (e.g.,

A) is straightforward.

E[Y ] =
∑
k

E[Y |Mk]P (Mk|D) (C.9)

The model-averaged covariance between A and B is given by

Cov [A,B] = 〈AB〉 − 〈A〉 〈B〉 (C.10)

=
∑
k

〈AB〉k p(Mk|D)−
(∑

k

〈A〉k p(Mk|D)

)(∑
k

〈B〉k p(Mk|D)

)

=
∑
k

Cov[A,B]k p(Mk|D) +
∑
k

〈A〉k 〈B〉k p(Mk|D)

−
(∑

k

〈A〉k p(Mk|D)

)(∑
k

〈B〉k p(Mk|D)

)

where 〈X〉k is the expectation value of X on Mk. Notice that when A = B this expression reduces to the

variance expression in the references.

Finally, we add a caveat about weights. The normalized Bayes factors p(Mk|D) (“the weights”) can only

be compared for models sharing the same response data D. In practice, this means that we can only compute

the weights for models that were fit simultaneously. In principle the covariance between two observables not

fit together (e.g., MΩ and MΞ) needn’t be 0 since the could share the same set of explanatory data (e.g., mπ),

but this covariance is comparably small and can be approximated as vanishing. We expect the bulk of the

correlation to arise from shared LECs.
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The empirical Bayes method

The empirical Bayes method allows us to estimate the prior distribution from the data; in that sense it is

not a truly ”Bayesian” approach, as the choice of prior is not data-blind. Nevertheless, it can serve as a useful

point of comparison when evaluating the reasonableness of our priors.

Typically when we think of a model for a chiral expression, we imagine this to mean the choice of fit

function (e.g.,M = “a Taylor expansion toO(m4
π)”); however, we can extend the definition of a model to also

include the prior. Let us therefore denote M = {Π, f} a candidate model for performing the extrapolation of

some observable, where f is the extrapolation function and Π is the set of priors for the LECs. By Bayes’

theorem, the most probable Π for a given f and dataset D is

p(Π|D, f) =
p(D|Π, f)p(Π|f)

p(D|f)
. (C.11)

Here we recognize p(D|Π, f) to be the familiar likelihood function and p(D|f) to be some unimportant

normalization constant. The curious term is the hyperprior distribution p(Π|f), which parameterizes the

distribution of the priors. We restrict our priors to the form π(ci) = N(0, σ2
j ) for LEC ci, where the index j

denotes some blocking of the LECs. For example, one might use the chiral/discretization split

Π =


π(cχ) = N(0, σ2

1)

π(cdisc) = N(0, σ2
2)

. (C.12)

The hyperprior p(Π|f), in this context, parameterizes the σj . We then vary σj uniformly on the interval

[σmin
j , σmax

j ] (in this work, σmin
j = 0.01 and σmax

j = 100). As we expect the LECs to be of order 1, we do not

expect the optimal values of σj to lie near the extrema. However, if they do, we should reflect on whether the

terms are disfavored by the data (σj ∼ σmin
j ) or the LEC is much greater than expected (σj ∼ σmax

j ).

Because the hyperprior distribution is uniform, we see that the peak of the posterior p(Π|D, f) occurs

at the peak of the likelihood function p(D|Π, f). Thus the empirical Bayes procedure is straightforward:

we find the set of priors that maximizes the likelihood function. But there is one general caveat here. We

reiterate that we have blocked the LECs together. One might instead be tempted to optimize each LEC

individually; however, this would be an abuse of empirical Bayes—by varying too many parameters, the
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uniformity assumption can no longer be made in good faith. We emphasize that the empirical Bayes method

is not a substitute for careful consideration when setting priors!

Plotting lattice data by shifting their values

In general, the fit function for some observable O depends on multiple parameters (mπ, mK , a, etc.), so

the curve we’re fitting is not a line but some multidimensional surface, which would generally be intractable

to plot. It is significantly easier to interpret a plot of O versus a single parameter, but this means carefully

taking a slice of that surface. Fortunately, this is fairly easy: we simply fix the other parameters to their

physical point values while allowing the single parameter to vary.

Of course, we’re not interested in plotting solely the fit; we’re also interested in plotting the data, which

gives us a visual indication of goodness of fit. However, this is tricky since most data is not generated at their

physical values. We therefore require some heuristic for “shifting” the lattice data from their ensemble values

to the physical point values.

We accomplish this task in the following manner. Suppose we’re interested in including on our plot the

ensemble value Oe at a given ensemble value of a variable we (e.g., we = mπ/Λχ on a12m220). Denote

the values of the remaining explanatory variables on that ensemble by xe. Then on each ensemble, we replace

Oe with Oshifted
e , defined by

Oshifted
e = Oe + Ô(w,xphys)− Ô(w,x) (C.13)

where Ô is the fit function parameterized by the fit’s posterior.
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CORRELATOR FITS

Baryons

Fit function

In section 1.2, we saw how to calculate the correlator of two observables using the Euclidean path

integral.

〈O2(t)O1(0)〉 =
1

Z0

∫
D[q, q]D[U ] e−SF [q,q,U ]−SG[U ]O2[q(t), q(t), U(t)]O1[q(0), q(0), U(0)] (D.1)

This (Euclidean) path integral is sampled using Monte-Carlo to determine the two-point function on the

lattice. However, there is another way one might defined the correlation function. As operators (rather than

functionals), the correlation function is defined as

〈O2(t)O1(0)〉 = lim
T→∞

1

ZT
Tr
{
e−(T−t)ĤÔ2e

−tĤÔ1

}
(D.2)

where ZT = Tr
{
e−TĤ

}
. From this definition, we see that by introducing a complete set of energy

eigenstates, we can rewrite this correlation function in terms of its energy spectrum.

〈O2(t)O1(0)〉 =
∑
m,n

〈m|e−(T−t)ĤÔ2|n〉 〈n|e−tĤÔ1|m〉 (D.3)

≈
∑
n

〈0|Ô2|n〉 〈n|Ô1|0〉 e−tEn as T →∞ (D.4)

The above formula is quite general, but it doesn’t tell us how to calculate the mass of some particular

baryon. To do that, we replace Ô1, Ô2 with operators that create a baryon from the vacuum at t = 0, which is

then destroyed at t = 1.

〈O2(t)O1(0)〉 → 〈Ω|B(t)B†(0)|Ω〉 (D.5)

Here Ω is the (QCD) vacuum and B† is an operator that creates an excitation with quantum numbers equal to

that of the specific baryon we’re interested in studying. The details here are quite messy (see Chapter 6 of [8],

for example), but the important bit is that these baryon interpolators links lattice sites (sources and sinks). We
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can either have the baryon be created/annihilated at a single source/sink (which we call Dirac or point) or

some general small region on the lattice (which we call smeared).

For technical reasons, it’s computationally cheaper to generate either the sink or the source smeared.

In our case, the source is always smeared, which we use to generate two copies of the ensemble, one with

a smeared sink and one with a point sink. The energy spectrum for either sink is the same, but the wave

function overlaps can differ. Therefore, we simultaneously fit the following two equations to determine the

energy spectrum:

CPS(t) =
∑
n

Z(P )
n Z(S)

n e−tEn , (D.6)

CSS(t) =
∑
n

|Z(S)
n |2e−tEn . (D.7)

Priors

Our fits are implemented through lsqfit [138], a Bayesian least squares fitter; since we are performing

a Bayesian fit, we require that our degree of belief in the values of each of our fits parameters be characterized

a priori. For the most part, we leave our priors much wider than expected, and therefore the prior mostly

serves to guide the minimizer towards non-pathological local minima.

We use the following iterative process to set our priors for the hyperons.

1. Plot the effective mass Meff(t) = log[C(t)/C(t + 1)] to determine a candidate time range. For the

starting time tstart, choose a time near the first plateau. The ending time tend typically has little influence

on the final result and can be chosen more freely; nevertheless, it’s wise to avoid a tend where the noise

is too great (in principle, the fitter should weigh these noisier points less, so including a few of them in

the fit is fine).

2. Perform an initial fit with a very wide prior, e.g.:

p[‘E’] = [1.0(1.0), 2.0(1.0), 3.0(1.0), · · ·]

p[‘wf dir’] = [0.0(1.0), 0.0(1.0), 0.0(1.0), · · ·] × e-04

p[‘wf smr’] = [0.0(1.0), 0.0(1.0), 0.0(1.0), · · ·] × e-04
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Figure D.1: Example of a correlator fit. The effective mass for a baryon asymptotes to the ground state, but
the noise also grows with time.

The priors for the excited state energies, in particular, are not very good. However, the posterior will be

roughly correct. Record the fit results for the ground state: mH ± σmH , Asmr ± σAsmr , Adir ± σAdir .

3. Using the results of the previous fit, we can now set reasonable priors for the fit. The ground state

should be roughly the same as that in our loose fit; to that end, we set the central value to be mH from

the previous fit. To prevent biasing the fit, set the width to be 100σmH , which in practice will cover all

but the earlier and latest (nosiest) effective mass values.

For the excited energy states, prior the next energy level to be two pions masses above the previous

state with a width of one pion mass (a baryon plus two pions has the same parity and spin as the

original baryon).

For the wave function overlaps, we use the results of the previous fit. Since the Dirac wave function

overlap can be negative, set the prior for the ground state to be 0± 2Asmr. The smeared wave function

overlap must be positive, so we set the prior to Adir ±Adir. The correlators are generated such that the

excited states have smaller wave function overlaps than the ground state; therefore, it is sufficient to

use the same prior for the excited states, too.

108



0.65

0.66

0.67

0.68

E
0

Stability plot: [t, 23]

Best fit

N = 1

N = 2

N = 3

N = 4

0

1

Q

4 6 8 10 12 14
t

0

1

w
N

Figure D.2: Stability plot versus tstart and Nstates. Here wN denotes the relative weights of the different Nstates
fit at a fixed t, which can be used to identify when the fit is stable versus Nstates.

This procedure will generate a prior like

p[‘E’] = [mH(100σmH), mH+2mπ(mπ), mH+4mπ(mπ), · · ·]

p[‘wf dir’] = [Adir(Adir) , Adir(Adir) , Adir(Adir) , · · ·]

p[‘wf smr’] = [0(2Asmr) , 0(2Asmr) , 0(2Asmr) , · · ·]

(Note that mH + 100σmH < mH + 2mπ even after the first iteration, so the ordering of the energy spectrum

is as expected.)

Fit criteria

When choosing a best candidate among fits, we rank a fit based on the following criteria:

1. The fit should have an acceptable χ2
ν and Q-value. Fits with χ2

ν � 1 underfit the data; fits with

χ2
ν � 1 overfit the data. Fits with poor Q-values either disagree strongly with the prior (in which

case the choice of prior might need to be redone) or poorly match the data. Anything with Q < 0.1 is

suspect.
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2. The fit should be stable versus time. In practice, this means the fit should be stable versus tstart since

the noise grows with time, resulting in the fit being mostly determined by data at earlier times. We

prefer fits that are in a stability plateau, not fits that are tending upwards or downwards as shown by the

stability plot.

3. The fit should be stable versus number of states. We prioritize fits that are nearly in exact agreement

for Nstates = 2 and Nstates = 3 while having some agreement with the late-time Nstates = 1 fit.

Mesons

The fit strategy employed for the mesons is generally taken from [140], albeit with more conservative

choices for our fits. We fit the two-point correlator as a single cosh (see below), symmetrically fitting the

interval [t, T − t]. When picking a fit, we prefer later plateaus to earlier ones, as those are the ones less likely

to be contaminated by excited states; further, we choose our fit such that the majority of late-time fits fall

within the error bar of the chosen fit (see stability plots below). That is, we choose as our representative

fits to be the ones with errors likely noticeably larger than they could be, preferring to err on the side of

overestimating our error versus underestimating it.

Because our fits are so conservative, and because the excited states are sensitive to the choice of prior

(unlike the ground state), we omit stability plots of the excited states in our analysis.

Fit function

Let us briefly revisit the spectral decomposition of the correlation function.

〈O2(t)O1(0)〉 =
∑
m,n

〈m|e−(T−t)ĤÔ2|n〉 〈n|e−tĤÔ1|m〉 (D.8)

Previously we simplified this sum by taking the limit T →∞. However, there is no such thing as infinity

on the lattice. Like the spacial extent, we force the temporal extent to have periodic boundary conditions.

For a baryon, the noise of the correlation function grows exponentially with time, so by the time the signal

correlators wraps back around to the start is imperceptible. This is not the case for mesons, which have

nearly constant noise, so we can no longer ignore the 〈m|e−(T−t)ĤÔ2|n〉 term. This motivates the following
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Figure D.3: Comparison of fit strategies for fitting a meson. After rerunning the fit on 5000 bootstraps
resamples, the results are identical.

expression for the correlation function,

C(t) =
∑
n

Z(PS)
n Z(SS)

n

(
e−Ent + e−En(T−t)

)
. (D.9)

Suppose we are only interested in the ground state, not the wave function overlap factors or excited states.

At later times, the higher excited states will die out, leaving only the ground state to be fit. For our fit function,

therefore, we fit a single state (which we’ve reexpressed as a hyperbolic function)

C(t) ≈ A0 cosh
(
eξ0(t− T/2)

)
(D.10)

where we have fit ξ0 = logE0 to ensure the ground state remains positive and we have absorbed the overlap

in A0 = 2Z
(PS)
0 Z

(SS)
0 e−E0T . Thus we get the result for E0 by exponentiating ξ0.

In this fit function, E0 is log-normally distributed; however, since the fits are employed with lsqfit

(and the errors are propagated as gvar variables), by exponentiating ξ0 we propagate the error through,

thereby getting a Gaussian distribution for E0. Refer to Fig. D.3 for a comparison of fitting E0 directly versus

fitting logE0 and exponentiating the gvar result.
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Prior

In order to use lsqfit, we must first set the prior for our fit parameters, ξ0 and A0, which we obtain

from the effective mass and effective wave function overlap, respectively. The former is constructed thus:

Meff(t) = arccosh
(
C(t+ 1) + C(t− 1)

2C(t)

)
, (D.11)

while the latter is constructed like so:

Aeff(t) =
C(t)

cosh (Meff(t− T/2))
. (D.12)

When picking our priors for E0 and A0, we choose values that include the values of Meff(t) and Aeff(t)

at all but the few earliest and latest times, where contamination from higher order states is obvious. In

practice, we achieve this through the following procedure, using phi jr 5/a15m350 as an example:

1. Pick a candidate time range for the fit by looking at the effective mass plot. Because meson statistics

are so well behaved, this choice can be essentially any time range.

2. Pick very loose priors for E0 and A0, e.g. p[E0] = 1.0(1.0), p[wf dir 0] = 0.00000(10)

3. Record the fit result (e.g., a loose fit might yield something like E0 = 0.41202(77), A0 = 1.039(11)×

10−11).

4. For E0, keep the mean and multiply the uncertainty by 100. Use this new value for the prior. For A0,

center the mean value about 0 with an uncertainty equal to twice the mean value from the fit. Our new

prior would be p[E0] = 0.41(10), p[wf dir 0] = 0.0(2.1)× 10−11).

Notice that we use E0 when picking our prior, despite fitting logE0. As an intermediate step, we use

gvar to convert p[E0] to p[log(E0)] when performing the fit.

These uncertainty of these priors end up being much larger than the uncertainties of any particular Meff(t)

and Aeff(t) as constructed from the data, so our Bayesian fit is essentially unaffected by our choice of prior;

here the prior serves to assist the fitter in converging faster to the correct answer. In the Meff(t) and Aeff(t)

plots below (Fig. D.4), the priors are wide enough that they cover the entirety of the y-limits in the plots.
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Figure D.4: Plots of effective quantities. Unlike for baryons, the noise is nearly constant with time.

Fit criteria

When choosing a representative fit, we evaluate the fit based on the following criteria, with importance

ranked as follows:

1. Avoid fits with χ2
ν < 0.2. We exclude these fits under the assumption that they are too conservative.

2. Choose fits that agree with other fits. Ideally the chosen fit should be wide enough such that it

contains the uncertainty intervals of all but the latest and earliest symmetric fits. If there are multiple

such fits, choose the one that minimally covers most fits.

3. Prefer later plateaus. If there is no fit that generally agrees with most of the other fits, then prefer

conservative fits that agree with later plateaus.
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IMPACT OF CHOICE OF Λχ, µ

Adapting a fixed renormalization scheme to the lattice

The appendix of [141] gives χPT expressions for the pseudoscalar decay constants, which we repeat

here. The expressions are written in the form

FP = F0 (1 + δFP + · · · ) (E.1)

where F0 is the value of Fπ in the chiral limit. The NLO corrections to the decays constants are

δFπ = −l0π −
1

2
l0K + 4

[(
ε2π + 2ε2K

)
L4 + 4ε2πL5

]
(E.2)

δFK = −3

8
l0π −

3

4
l0K −

3

8
l0η + 4

[(
ε2π + 2ε2K

)
L4 + 4ε2KL5

]
(E.3)

where

εP =
mP

4πFπ
, lP

′
P = ε2P log

[(
mP

µP ′

)2
]
, Li = (4π)2Li . (E.4)

In this case, l0P corresponds to the choice µ = µ0. We stress the following points:

1. The choice of Λχ = 4πFπ is only a proxy for the chiral scale; other choices are valid.

2. Here µ0 = 4πF0 is a fixed renormalization scale.

For the actual lattice calculation we would prefer to avoid using a fixed renormalization scale, as a fixed

renormalization scale would require scale setting. Instead, we use the lattice values of Fπ and FK as a proxy

for F0 and introduce an NNLO correction to FK/Fπ (whose value varies by ensemble) that accounts for the

fact that our renormalization scale is not fixed.

To understand how we can track this correction, we begin with the NLO expression for FK/Fπ.

FK
Fπ

=
1 + δFK + · · ·
1 + δFπ + · · ·

≈ 1 + δFK − δFπ

= 1 +
5

8
l0π −

1

4
l0K −

3

8
l0η + 4

(
ε2K − ε2π

)
L5 (E.5)
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Notice that the log parts can be rewritten as

l0P = ε2P log

[(
mP

µP ′

µP ′

µ0

)2
]

= lP
′

P + ε2P log

[(
µP ′

µ0

)2
]

(E.6)

which allows us to rewrite the NLO expression for FK/Fπ as

FK
Fπ

=

(
1 +

5

8
lP
′

π −
1

4
lP
′

K −
3

8
lP
′

η + 4
(
ε2K − ε2π

)
L5

)
− 3

4

(
ε2K − ε2π

)
log

[(
µP ′

µ0

)2
]

=
FK
Fπ

∣∣∣
µ0→µP ′

− 3

4

(
ε2K − ε2π

)
log

[(
µP ′

µ0

)2
]
. (E.7)

The last term is the renormalization scale correction (the ε2 terms have been simplified using the GMOR

relation (Eq. (3.74)). Available on our lattice are FK and Fπ, which we use for the sliding renormalization

scale. Since µP ′/µ0 = FP ′/F0, we have the following for the NNLO sliding renormalization scale corrections

to the χPT expression.

−3

4

(
ε2K − ε2π

)
log

[(
µπ
µ0

)2
]
≈ −3

2

(
ε2K − ε2π

)
δFπ = δNNLO

µ=µπ

−3

4

(
ε2K − ε2π

)
log

[(
µK
µ0

)2
]
≈ −3

2

(
ε2K − ε2π

)
δFK = δNNLO

µ=µK

−3

4

(
ε2K − ε2π

)
log

[(
µK
µ0

)(
µπ
µ0

)]
≈ −3

4

(
ε2K − ε2π

)
(δFK + δFπ) = δNNLO

µ2=µπµK
(E.8)

Correcting for different choices of Λχ

In the previous section we considered three different choices for the sliding renormalization scale by

using FK , Fπ or the geometric average
√
FKFπ. We consider the three cases instead of just a single case (say,

µ = 4πFπ) as this allows us to systematically evaluate the choice of µ on our fits. Similarly if we choose, for

instance, µ = 4πFK for our renormalization scale, it seems sensible to also set Λχ = 4πFK for the chiral

symmetry breaking scale. Continuing with the example, this amounts to the following modification of εP .

mP

4πFπ
→ mP

4πFK
(E.9)
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The new choice for Λχ introduces differences at NNLO.

FK
Fπ
≈ 1 + δFK − δFπ

= 1 +
[
(δFK − δFπ)

∣∣
F 2
π→F 2

K

](FK
Fπ

)2

≈ 1 +
[
(δFK − δFπ)

∣∣
F 2
π→F 2

K

]
[1 + (δFK − δFπ)]2

≈ FK
Fπ

∣∣∣
F 2
π→F 2

K

+ 2 (δFK − δFπ)2 (E.10)

Therefore we correct for the differences by introducing a term δNNLO
Λχ

. For Fπ = 0, the correction is trivially

0 (as Λχ = 4πFπ was assumed to be the cutoff). Adapting the above derivation to use the geometric average

instead is straightforward. In summary,

δNNLO
Λχ→4πFπ = 0

δNNLO
Λχ→4πFK

= 2 (δFK − δFπ)2

δNNLO
Λχ→4π

√
FπFK

= (δFK − δFπ)2 . (E.11)
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